
Metrol. Meas. Syst., Vol. 32 (2025) No. 2, pp. 1–18
DOI: 10.24425/mms.2025.154334

METROLOGY AND MEASUREMENT SYSTEMS

Index 330930, ISSN 0860-8229
www.metrology.wat.edu.pl

A TWO-STAGE ADAPTIVE IDENTIFICATION FRAMEWORK OF THE TIRE ROAD
FRICTION COEFFICIENT CONSIDERING THE EFFECT OF MULTIPLE UNKNOWN
MEASUREMENT NOISES

Fengjiao Zhang1) , Bo Zhang1) , Lanchun Zhang2) , Ting Meng3) , Yan Wang4)

1) Changzhou Vocational Institute of Mechatronic Technology, College of Transportation Engineering,
26 Mingxin Middle Road, 213164 Changzhou, China

2) Jiangsu University of Technology, School of Automotive and Traffic Engineering,
1801 Zhongwu Road, 213001 Changzhou, China

3) The Hong Kong Polytechnic University, School of Electrical and Electronic Engineering,
11 Kowloon Hung Hom Yuk Choi Road, 999077 Hong Kong, China

4) The Hong Kong Polytechnic University, The Department of Industrial and Systems Engineering,
11 Kowloon Hung Hom Yuk Choi Road, 999077 Hong Kong, China (B yanjack.wang@polyu.edu.hk)

Abstract
The tire-road friction coefficient (TRFC) directly determines the available traction and braking forces of
the tires, which in turn has a significant impact on vehicle stability control, particularly for commercial
vehicles such as heavy-duty trucks. However, onboard sensors typically cannot directly measure the exact
TRFC. To obtain an accurate TRFC, estimation algorithms are used, which rely on data from onboard sensors
combined with vehicle and tire models. Since the signals required for estimation come from various types of
sensors, in practice accurately obtaining the noise statistical characteristics of all sensors is highly challenging.
Additionally, due to the complex and variable nature of vehicle operating conditions, noise tends to be
time-varying as a result of environmental factors, which inevitably affects the accuracy of the estimation. To
address these problems, we propose a two-stage adaptive identification framework that combines the extended
H-infinity Kalman filter (EHKF) with the adaptive unscented Kalman filter (AUKF). First, in situations where
the noise statistical characteristics are unknown, EHKF and the tire model are used to accurately estimate
forces on the front and rear axles. Second, considering the time-varying nature of the noise, the AUKF,
along with the vehicle model and axial force information, is employed to estimate the TRFC for the front
and rear wheels. Finally, simulation tests on various road surfaces demonstrate that the two-stage adaptive
identification method outperforms the unscented Kalman filter in terms of accuracy and stability.
Keywords: Tire-road friction coefficient estimation, adaptive identification framework, extended H-infinity
Kalman filter, adaptive unscented Kalman filter.

1. Introduction
Rollover accidents have become a frequent road safety concern for commercial vehicles,

particularly heavy trucks. Compared to passenger cars, the increased size and weight of heavy
vehicles result in a higher risk of rollovers [1–3]. Many experts and scholars have researched
rollover prevention, and the timing of the intervention of rollover control strategies is closely
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related to the tire-road friction coefficient (TRFC). In addition to avoiding accidents through
rollover control, it is also possible to reduce the incidence of accidents by controlling steering
and braking [4]. Such control systems are often called active collision avoidance systems [5]. A
collision avoidance system generally includes motion prediction and path planning [6, 7]. Fully
utilizing the TRFC when generating and tracking the path can enhance the system’s performance.
Furthermore, it is heavy trucks that typically undertake long-distance freight transportation, which
inevitably involves different road surfaces, such as asphalt, gravel, or icy roads. On different
road surfaces, even the same heavily loaded vehicle has a varying stability margin, making it
necessary to identify the TRFC in real-time. In addition, changes in the driving environment,
such as road surface conditions, weather, and traffic, can significantly affect measurement noise in
vehicle dynamics. For instance, rough or uneven road surfaces introduce high-frequency vibrations,
increasing noise in sensor readings such as acceleration or wheel speed. Similarly, environmental
factors like rain or snow can alter friction characteristics, leading to greater uncertainty and
variability in measurements.

Unfortunately, the TRFC cannot be directly measured using onboard sensors [8]. As a result, it
must be estimated through indirect methods. The TRFC is typically estimated using two main
approaches: experimental methods and model-based methods [9]. In experiments, optical sensors
are attached to the vehicle to collect TRFC-related data, such as tire noise and carcass deformation.
The TRFC is then estimated on the basis of the correlation between these measured parameters and
the TRFC. Additionally, a position-sensitive detector was used to indirectly measure the real-time
deformation of the tire carcass relative to the rim to estimate the TRFC [10]. Other types of sensors,
such as piezoelectric sensors, estimated the TRFC by detecting tread deformation [11]. In addition,
measuring the TRFC based on accelerometer data is also an effective method [12,13]. However,
these experimental approaches often require the installation of additional sensors, which leads to
high costs and limited practicality. Recently, computer vision has been used to estimate the TRFC
by analysing road images with machine learning [14,15]. Machine learning-based methods for
identifying the TRFC offer the advantage of adapting to complex, nonlinear relationships between
vehicle dynamics and road conditions thus improving prediction accuracy. These methods can
also handle large datasets and identify patterns that traditional models may miss. However, their
main drawback lies in the need for extensive training data and the risk of overfitting, which may
limit their generalizability to unseen road conditions.

Model-based methods typically use standard onboard sensors to acquire signals related to the
TRFC and combine them with vehicle dynamics and tire models to estimate the TRFC. Specifically,
these approaches can be classified into two main types: ones that rely on longitudinal dynamics
and others that focus on lateral dynamics [16, 17]. The methods based on longitudinal dynamics
primarily estimate the TRFC using the slip ratio. For example, Lee et al. [18] developed a traction
estimator that integrates slip curves to estimate the TRFC. Cui et al. [19] identified the TRFC
based on fitted curves that relate the TRFC to slip ratios under five different road conditions.
Additionally, Sharifzadeh et al. [20] employed recursive least squares to estimate the TRFC using
slip signals. Zhao et al. [21] proposed a linear extended state observer to estimate the TRFC based
on the braking dynamics model of a two-wheeled vehicle. To enhance estimation accuracy further,
many researchers have utilized Kalman filters for TRFC estimation. The extended Kalman filter
(EKF) has also been applied for TRFC identification [22]. Similar TRFC identification methods
have also been documented in the literature [23, 24]. The use of Kalman filtering techniques
allows researchers to continuously update their estimates as new data is collected. This real-time
processing is particularly beneficial in dynamic driving situations where road conditions may
change rapidly. The EKF further refines this process by accommodating non-linearities in the
system, providing even more accurate TRFC estimates.
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During turning manoeuvres, Hu et al. [25] designed an EKF on the basis of vehicle lateral
dynamics to estimate the TRFC. To further enhance the identification performance of the TRFC,
unscented Kalman filters (UKF) have also been employed [26]. For instance, Wang et al. [27]
introduced a comprehensive estimation scheme based on the UKF to predict the TRFC under
conditions of mass mismatch. Additionally, an improved UKF was utilized to address the issue of
TRFC estimation in scenarios where data loss occurs [28]. These filters use vehicle nonlinearities for
reliable TRFC estimates, especially in cornering. The integration of UKF allows for a more accurate
identification of the TRFC by effectively handling uncertainties and variations in the input data.

Recently, as deep learning algorithms have advanced, data-driven approaches have been
increasingly used for TRFC estimation. McBride et al. [29] compared observer-based methods
with neural network-based approaches and found that neural networks operated more quickly
and directly while providing accuracy comparable to traditional methods. Xu et al. [30] further
demonstrated that neural networks could successfully predict tire forces, highlighting the potential
of neural network approaches in estimating tire-road interaction dynamics. Furthermore, Sadeghi et
al. [31] utilized four key features and developed a multilayer neural network to estimate the TRFC.
Additionally, a spatial-temporal convolutional neural network was proposed to predict the TRFC
with enhanced accuracy [32]. Although data-driven methods have been shown to effectively estimate
the TRFC, there still remain significant challenges in terms of data collection and interpretability.

From the above analysis, it is evident that model-based estimation methods remain the dominant
approach in current research. These methods typically estimate the TRFC by first determining the
tire forces. Estimating tire forces requires data from multiple sensors, such as wheel speed and
steering angle signals, while TRFC estimation also relies on vehicle acceleration data. However,
the noise characteristics of these sensors are often unknown or time-varying. Existing research
rarely takes into account both the influence of unknown noise during tire force estimation and the
impact of time-varying measurement noise on the accuracy of TRFC identification. To address
these issues, an estimation scheme that integrates the extended H-infinity Kalman filter (EHKF)
with the adaptive unscented Kalman filter (AUKF) has been proposed for TRFC identification.
First, considering that the estimation of tire forces is influenced by unknown noise, the EHKF
is employed to estimate the longitudinal and lateral forces acting on the tire. It should be noted
that due to the use of the single-track model, we assume that the forces on the front axle and
rear axle are respectively equal to the sum of the forces on the two front wheels and the two rear
wheels. Furthermore, to address the time-varying characteristics of noise during vehicle operation,
the AUKF is utilized to achieve real-time estimation of the TRFC with the vehicle model and
tire force information. Finally, the two-stage adaptive identification method is validated under
various conditions using a co-simulation platform based on TruckSim and MATLAB/Simulink.
Some contributions are listed as follows.

1. A novel estimation method for tire forces is proposed which integrates a tire model with the
EHKF. This approach accounts for the influence of completely unknown noise characteristics,
enabling precise and robust calculation of tire forces under varying operational conditions.

2. A two-stage adaptive estimation scheme is developed to identify the TRFC. This framework
simultaneously addresses noise uncertainties in all input signals associated with the tire
and vehicle models, ensuring reliable performance even in the presence of dynamic and
unpredictable environmental and system variations.

The remainder of this paper is organized as follows: Section 2 presents the methodology,
Section 3 details the simulation tests, and Section 4 provides the conclusions of this study.
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2. Methodology

The framework of the two-stage adaptive TRFC estimation is shown in Fig. 1. Initially, the
longitudinal and lateral tire forces, along with noise, are estimated using data from onboard sensors
and a tire model. Next, these values are input into the EHKF for filtering to obtain more accurate tire
forces. Because the vehicle model is a single-track one, the tire forces are aggregated and translated
into forces acting on the front and rear axles. Then, using the vehicle model and AUKF, the TRFC
for the front and rear wheels is obtained. The proposed two-stage framework leverages the strengths
of EHKF and AUKF to address different challenges in the estimation process. EHKF ensures robust
force estimation under unknown noise conditions, while AUKF refines TRFC estimation by adapting
to time-varying noise and system non-linearities, creating a complementary and effective approach.

Fig. 1. Two-stage estimation scheme.

The estimation of the TRFC requires precise vehicle and tire models to be established. Taking
into account the computational cost and model complexity, a single-track vehicle model is chosen
to describe the vehicle’s dynamic response. Furthermore, the tire forces are derived using the
Dugoff tire model.

2.1. The Vehicle Model

A single-track vehicle model [33] is employed, as shown in Fig. 2. Air resistance and suspension
system effects are ignored. The model assumes that the mechanical characteristics of the left and
right tires are identical and can be linearly superimposed, represented by a single tire, thereby
reducing the four-wheel vehicle model to a two-wheel model. Additionally, it assumes small
steering angles, neglects the vehicle’s roll and pitch motions, and ignores aerodynamic forces such
as drag and lift. Moreover, the vehicle’s centre of gravity is assumed to be positioned at the origin
of the coordinate system. Unlike traditional passenger cars, which are typically front-wheel driven,
heavy-duty vehicles are usually rear-wheel driven.

𝑎𝑥 =

(
𝐹𝑥 𝑓 sin 𝛿 + 𝐹𝑥𝑟

)
𝑚

, (1)

𝑎𝑦 =

(
𝐹𝑦 𝑓 cos 𝛿 + 𝐹𝑦𝑟

)
𝑚

, (2)

¤𝑟 𝐼𝑧 = 𝐿 𝑓

(
𝐹𝑥 𝑓 sin 𝛿 + 𝐹𝑦 𝑓 cos 𝛿

)
− 𝐿𝑟𝐹𝑦𝑟 , (3)
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where 𝛽, 𝑣𝑥 , 𝑣𝑦 denote the sideslip angle, longitudinal vehicle velocity, and lateral vehicle velocity,
𝑎𝑥 and 𝑎𝑦 denote longitudinal acceleration and lateral acceleration, 𝐼𝑧 is the inertia moment about
the vehicle vertical axis, the parameters 𝐿 𝑓 and 𝐿𝑟 denote the distance from the centre of gravity
to the front axle and rear axle, 𝑚 is the vehicle mass, 𝛿 is the front wheel angle, 𝐹𝑥 𝑓 , 𝐹𝑦 𝑓 are
longitudinal and lateral forces of the front axle, 𝐹𝑥𝑟 , 𝐹𝑦𝑟 are longitudinal and lateral forces of the
rear axle, 𝑟 is the yaw rate. Here, we assume that the axial forces for both the front and rear axles
are equal to the sum of the forces on the two front wheels and the two rear wheels, respectively.

Fig. 2. Single-track vehicle model.

2.2. The Tire Model

The relationship between tire motion and forces is defined by the Dugoff tire model [34]. The
corresponding equations are presented below.

𝐹𝑥,𝑖 = 𝜇𝑖𝐹
0
𝑥,𝑖 = 𝜇𝑖𝐹𝑧,𝑖𝐶𝑥,𝑖

(
𝑠𝑖

1 + 𝑠𝑖

)
𝑓 (𝐿) , (4)

𝐹𝑦,𝑖 = 𝜇𝑖𝐹
0
𝑦,𝑖 = 𝜇𝑖𝐹𝑧,𝑖𝐶𝑦,𝑖

(
tan𝛼𝑖
1 + 𝑠𝑖

)
𝑓 (𝐿) , (5)

𝑓 (𝐿) =
{
𝐿 (2 − 𝐿) , 𝐿 < 1

1, 𝐿 ≥ 1 , (6)

𝐿 =
1 − 𝑠𝑖

2
√︃
𝐶2
𝑥𝑠

2
𝑖
+ 𝐶2

𝑦 (tan𝛼𝑖)2
, (7)

𝐹𝑧,1 =
𝑚𝑔𝐿𝑟

2
(
𝐿 𝑓 + 𝐿𝑟

) − 𝑚𝑎𝑥ℎ

2
(
𝐿 𝑓 + 𝐿𝑟

) − 𝑚𝑎𝑦ℎ

𝑇 𝑓

· 𝐿𝑟

𝐿 𝑓 + 𝐿𝑟
, (8)

𝐹𝑧,2 =
𝑚𝑔𝐿𝑟

2
(
𝐿 𝑓 + 𝐿𝑟

) − 𝑚𝑎𝑥ℎ

2
(
𝐿 𝑓 + 𝐿𝑟

) + 𝑚𝑎𝑦ℎ
𝑇 𝑓

· 𝐿𝑟

𝐿 𝑓 + 𝐿𝑟
, (9)

𝐹𝑧,3 =
𝑚𝑔𝐿 𝑓

2
(
𝐿 𝑓 + 𝐿𝑟

) + 𝑚𝑎𝑥ℎ

2
(
𝐿 𝑓 + 𝐿𝑟

) − 𝑚𝑎𝑦ℎ

𝑇𝑟
·

𝐿 𝑓

𝐿 𝑓 + 𝐿𝑟
, (10)

𝐹𝑧,4 =
𝑚𝑔𝐿 𝑓

2
(
𝐿 𝑓 + 𝐿𝑟

) + 𝑚𝑎𝑥ℎ

2
(
𝐿 𝑓 + 𝐿𝑟

) + 𝑚𝑎𝑦ℎ
𝑇𝑟

·
𝐿 𝑓

𝐿 𝑓 + 𝐿𝑟
, (11)

𝑠𝑖 = sgn(𝑣𝑥 − 𝑅𝜔𝑖)
|𝑣𝑥 − 𝑅𝜔𝑖 |

max(𝑅𝜔𝑖 , 𝑣𝑥)
, (12)
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𝛼1 = 𝛿 − arctan
©­­­«
𝑣𝑦 + 𝐿 𝑓 𝑟

𝑣𝑥 −
𝑇 𝑓 𝑟

2

ª®®®¬ , (13)

𝛼2 = 𝛿 − arctan
©­­­«
𝑣𝑦 + 𝐿 𝑓 𝑟

𝑣𝑥 +
𝑇 𝑓 𝑟

2

ª®®®¬ , (14)

𝛼3 = − arctan
©­­«
𝑣𝑦 − 𝐿𝑟𝑟

𝑣𝑥 −
𝑇𝑟𝑟

2

ª®®¬ , (15)

𝛼4 = − arctan
©­­«
𝑣𝑦 − 𝐿𝑟𝑟

𝑣𝑥 +
𝑇𝑟𝑟

2

ª®®¬ , (16)

where 𝜇 is the TRFC, ℎ represents the height of the centre of gravity, 𝑠𝑖 , 𝛼𝑖 denote the longitudinal
slip ratio, wheel sideslip angle,𝐶𝑥,𝑖 ,𝐶𝑦,𝑖 , 𝐹𝑧,𝑖 represent longitudinal and lateral stiffness coefficients
of tires along with vertical tire forces, 𝐹0

𝑥,𝑖
, 𝐹0

𝑦,𝑖
are the normalized longitudinal and lateral forces,

𝑖 = 1, 2, 3, 4, which corresponds to the left-front, right-front, left-rear, and right-rear wheels,
respectively, 𝜔𝑖 is the wheel rotational speed, 𝑅𝑖 is the wheel radius, 𝑇 𝑓 and 𝑇𝑟 represent front
track width and rear track width.

2.3. The EHKF

Unlike the traditional EKF, the EHKF eliminates the need for prior assumptions about noise
characteristics. By minimizing the maximum estimation error, the HEKF offers greater robustness
compared to the EKF. The nonlinear system model is described as follows.

{
𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘

𝑧𝑘+1 = ℎ(𝑥𝑘+1, 𝑢𝑘+1) + 𝑣𝑘+1
,

𝑥 =

[
𝐹0
𝑥,𝑖 , 𝐹

0
𝑦,𝑖

]𝑇
, 𝑖 = 1, 2, 3, 4,

(17)

where 𝑓 (·) denotes state transition function, 𝑤 process noise, and 𝑣 measurement noise, 𝑧 is
the measurement vector, ℎ (·) denotes measurement transition function, 𝑢 is the input vector,
𝑥 represents the state vector. While 𝑓 (·) and ℎ (·) are not directly applied in the EKF update step,
their Jacobian forms are utilized as the transition and observation matrices, respectively.

𝐹𝑘 =
𝜕 𝑓

𝜕𝑥

���� 𝑥𝑘−1 |𝑘 − 1 , (18)

𝐻𝑘 =
𝜕ℎ

𝜕𝑥

���� 𝑥𝑘 |𝑘−1 . (19)
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The EHKF not only limits the upper limit of the estimation error but also minimizes this upper
limit. Thus, the cost function is defined as follows.

𝐽 =

𝑁∑︁
𝑘=1

∥𝑥𝑘 − 𝑥𝑘 ∥2

∥𝑥0 − 𝑥0∥2
𝑃−1

0
+

𝑁∑
𝑘=1

(
∥𝑤𝑘 ∥2

𝑄−1
𝑘

+ ∥𝑣𝑘 ∥2
𝑅−1
𝑘

) , (20)

where 𝑥0 is the initial state vector 𝑥𝑘 , 𝑄𝑘 is the covariance matrix of the process noise, 𝑅𝑘 is the
covariance matrix of the measurement noise, and 𝑃0 is the initial value of the state covariance
matrix 𝑃𝑘 .

The objective of establishing this loss function is to find an appropriate 𝑥𝑘 that minimizes 𝐽.
However, in real-world applications, finding the optimal solution is difficult, and suboptimal
solutions are commonly used. Thus, the cost function takes the following form:

Sup {x0, v𝑘 ,w𝑘} =

𝑁∑︁
𝑘=1

∥𝑥𝑘 − 𝑥𝑘 ∥2

∥𝑥0 − 𝑥0∥2
𝑃−1

0
+

𝑁∑︁
𝑘=1

(
∥𝑤𝑘 ∥2

𝑄−1
𝑘

+ ∥𝑣𝑘 ∥2
𝑅−1
𝑘

) ≤ 𝛾2, (21)

where 𝛾 > 0 and 𝛾2 denote the thresholds that limit the upper limit of the energy of the cost
function. The smaller the value of 𝛾, the more robust the estimator becomes. Thus, the overall
iterative process of constructing the EHKF is as shown below.

Time Update:
The prior state prediction

𝑥𝑘 |𝑘−1 = 𝐹𝑘𝑥𝑘−1 |𝑘−1. (22)
The error covariance prediction

𝑃𝑘 |𝑘−1 = 𝐹𝑘𝑃𝑘−1 |𝑘−1𝐹
𝑇
𝑘 +𝑄𝑘−1. (23)

Measurement Update

𝑆𝑘 = 𝐿𝑇𝑘 𝑆𝑘𝐿𝑘 . (24)

𝑀𝑘 = 𝐼 − 𝛾𝑆𝑘𝑃𝑘 |𝑘−1 + 𝐻𝑇
𝑘 𝑅

−1
𝑘 𝐻𝑘𝑃𝑘 |𝑘−1. (25)

Compute the Kalman Gain
𝐾𝑘 = 𝑃𝑘 |𝑘𝑀𝑘𝐻

𝑇
𝑘 𝑅

−1
𝑘 . (26)

Update the posterior state:

𝑥𝑘 |𝑘 = 𝑥𝑘 |𝑘−1 + 𝐾𝑘

(
𝑧𝑘 − 𝐻𝑘𝑥𝑘 |𝑘−1

)
. (27)

Update the error Covariance
𝑃𝑘 |𝑘 = 𝑃𝑘 |𝑘−1𝑀𝑘 , (28)

Above, 𝑆𝑘 is the state weightage matrix and 𝐿𝑘 is the identify matrix. Further, the existence of
EHKF needs to satisfy the following equation [35]:

𝑃−1
𝑘 |𝑘 + 𝐻𝑇

𝑘 𝑅
−1
𝑘 𝐻𝑘 − 𝛾−2𝐿𝑇𝑘 𝐿𝑘 > 0. (29)

For the filtering of tire forces, at this point, the Jacobi matrices 𝐹𝑘 and 𝐻𝑘 are both unit
matrices and the matrix dimension is 8.
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2.4. The AUKF

The TRFC can be treated as constant during brief time intervals. By leveraging the relationships
between 𝐹0

𝑥,𝑖
, 𝐹𝑥,𝑖 , 𝐹0

𝑦,𝑖
and 𝐹𝑦,𝑖 as defined in Eqs. (4–5), the discrete mathematical model can be

obtained through equations (1–3):{
𝑥TRFC
𝑘+1 = 𝑓 (𝑥TRFC

𝑘
, 𝑢𝑘) + 𝑤TRFC

𝑘

𝑧TRFC
𝑘+1 = ℎ(𝑥TRFC

𝑘+1 , 𝑢𝑘+1) + 𝑣TRFC
𝑘+1

, (30)

𝑥TRFC = [𝜇1, 𝜇2, 𝜇3, 𝜇4]𝑇 , 𝑥TRFC
𝜏+1 = [𝑎𝑥 , 𝑎𝑦 , ¤𝑟]𝑇 . (31)

We use the AUKF to estimate the average TRFC 𝜇 𝑓 = 0.5 (𝜇1 + 𝜇2) for the front-wheel and
the average TRFC 𝜇𝑟 = 0.5 (𝜇3 + 𝜇4) for the rear-wheel. The detailed iterative steps are outlined
as follows:

1) Initialization:
The initial mean of 𝑥TRFC and its covariance matrix (CM) 𝑃TRFC

𝑥TRFC
0 = 𝐸

(
𝑥TRFC

0

)
, (32)

𝑃TRFC
0 = 𝐸

[(
𝑥TRFC

0 − 𝑥TRFC
0

) (
𝑥TRFC

0 − 𝑥TRFC
0

)𝑇 ]
. (33)

2) Time steps:
The sigma sampling points (SSP) 𝜆𝑖

𝑘−1 and weight 𝜙𝑖𝑐, 𝜙𝑖𝑚 are given by
𝜆0
𝑘−1 = 𝑥TRFC

𝑘−1
𝜆𝑖
𝑘−1 = 𝑥TRFC

𝑘−1 +
√
𝑛 + 𝜆

(√
𝑃

TRFC
𝑘−1

)
𝑖
, 𝑖 = 1, 2, · · · 𝑛

𝜆𝑖
𝑘−1 = 𝑥TRFC

𝑘−1 −
√
𝑛 + 𝜆

(√
𝑃

TRFC
𝑘−1

)
𝑖
, 𝑖 = 𝑛 + 1, · · · 2𝑛

, (34)

{
𝜙0
𝑚 = 𝜆/(𝑛 + 𝜆) , 𝜙0

𝑐 = 𝜆/(𝑛 + 𝜆) + 1 + 𝛽 − 𝛼2

𝜙𝑖𝑚 = 𝜙𝑖𝑐 = 𝜆/(2 (𝑛 + 𝜆)) , 𝑖 = 1, 2, · · · 2𝑛 ,{
𝜙0
𝑚 = 𝜆/(𝑛 + 𝜆) , 𝜙0

𝑐 = 𝜆/(𝑛 + 𝜆) + 1 + 𝛽 − 𝛼2

𝜙𝑖𝑚 = 𝜙𝑖𝑐 = 𝜆/(2 (𝑛 + 𝜆)) , 𝑖 = 1, 2, · · · 2𝑛 ,

(35)

where 𝑛 is the dimension of 𝑥, 𝜆, 𝛽, and 𝛼 can be seen in [36].
The propagated SSP are updated by

𝜆
∗(𝑖)
𝑘/𝑘−1 = 𝑓

(
𝜆
(𝑖)
𝑘−1, 𝑢𝑘−1

)
. (36)

The prior state 𝑥TRFC
𝑘/𝑘−1 and corresponding state CM 𝑃TRFC

𝑘/𝑘−1 are calculated utilizing (37) and
(38), respectively.

𝑥TRFC
𝑘/𝑘−1 =

2𝑛∑︁
𝑖=0

𝜙𝑖𝑚𝜆
∗(𝑖)
𝑘/𝑘−1, (37)

𝑃TRFC
𝑘/𝑘−1 =

2𝑛∑︁
𝑖=0

𝜙𝑖𝑐

(
𝜆
∗(𝑖)
𝑘/𝑘−1 − 𝑥

TRFC
𝑘/𝑘−1

) (
𝜆
∗(𝑖)
𝑘/𝑘−1 − 𝑥

TRFC
𝑘/𝑘−1

)𝑇
+𝑄TRFC

𝑘−1 , (38)

where 𝑄TRFC
𝑘−1 is the CM of the process noise.

8



Metrol. Meas. Syst.,Vol. 32 (2025), No. 2, pp. 1–18
DOI: 10.24425/mms.2025.154334

3) Measurement steps:
The new SSP 𝜆𝑖

𝑘
are as follows:


𝜆0
𝑘
= 𝑥TRFC

𝑘/𝑘−1

𝜆𝑖
𝑘
= 𝑥TRFC

𝑘/𝑘−1 +
√
𝑛 + 𝜆

(√
𝑃

TRFC
𝑘/𝑘−1

)
𝑖
, 𝑖 = 1, 2, · · · 𝑛

𝜆𝑖
𝑘
= 𝑥TRFC

𝑘/𝑘−1 −
√
𝑛 + 𝜆

(√
𝑃

TRFC
𝑘/𝑘−1

)
𝑖
, 𝑖 = 𝑛 + 1, · · · 2𝑛

, (39)

The propagated SSP are updated by

𝑧
∗(𝑖)
𝑘/𝑘−1 = ℎ

(
𝜆
(𝑖)
𝑘
, 𝑢𝑘

)
. (40)

The estimated output 𝑧𝑘/𝑘−1 and its CM𝑃𝑧,𝑘 are calculated using (41) and (42), respectively.

𝑧TRFC
𝑘/𝑘−1 =

2𝑛∑︁
𝑖=0

𝜙𝑖𝑚𝑧
∗(𝑖)
𝑘/𝑘−1, (41)

𝑃TRFC
𝑧,𝑘 =

2𝑛∑︁
𝑖=0

𝜙𝑖𝑐

(
𝑧
∗(𝑖)
𝑘/𝑘−1 − 𝑧

TRFC
𝑘/𝑘−1

) (
𝑧
∗(𝑖)
𝑘/𝑘−1 − 𝑧

TRFC
𝑘/𝑘−1

)𝑇
+ 𝑅TRFC

𝑘 , (42)

where 𝑅TRFC
𝑘

is the CM of the measurement noise.
The CM𝑃TRFC

𝑥𝑧,𝑘
is given by

𝑃TRFC
𝑥𝑧,𝑘 =

2𝑛∑︁
𝑖=0

𝜙𝑖𝑐

(
𝑧
∗(𝑖)
𝑘/𝑘−1 − 𝑥

TRFC
𝑘/𝑘−1

) (
𝑧
∗(𝑖)
𝑘/𝑘−1 − 𝑥

TRFC
𝑘/𝑘−1

)
.
𝑇

(43)

The gain matrix 𝐾TRFC
𝑘

can be calculated using (44) and the posterior state 𝑥TRFC
𝑘

and its
CM𝑃TRFC

𝑘
are updated using (45) and (46).

𝐾TRFC
𝑘 = 𝑃TRFC

𝑥𝑧,𝑘

(
𝑃TRFC
𝑧,𝑘

)−1
, (44)

𝑥TRFC
𝑘 = 𝑥TRFC

𝑘,𝑘/𝑘−1 + 𝐾
TRFC
𝑘

(
𝑧TRFC
𝑘 − 𝑧TRFC

𝑘/𝑘−1

)
, (45)

𝑃TRFC
𝑘 = 𝑃TRFC

𝑘/𝑘−1 − 𝐾
TRFC
𝑘 𝑃TRFC

𝑧,𝑘

(
𝐾TRFC
𝑘

)𝑇
. (46)

The above iterative process of UKF presumes that the 𝑅TRFC
𝑘

is known, and in order to adapt
to the variable driving conditions, the dynamic update of 𝑅TRFC

𝑘
is performed as follows:

𝜀𝑘 = 𝑧TRFC
𝑘 − 𝑧TRFC

𝑘/𝑘−1, (47)

𝐶̂𝑘 =

𝑘∑
𝑖=𝑘−𝐿+1

𝜀𝑖𝜀
𝑇
𝑖

𝐿
, (48)

𝑅̂TRFC
𝑘 = 𝐶̂𝑘 +

2𝑛+1∑︁
𝑖=0

[
𝜙𝑖𝑐

(
𝑧
∗(𝑖)
𝑘/𝑘−1 − 𝑧

TRFC
𝑘/𝑘−1 + 𝐶̂𝑘

) (
𝑧
∗(𝑖)
𝑘/𝑘−1 − 𝑧

TRFC
𝑘/𝑘−1 + 𝐶̂𝑘

)𝑇 ]
. (49)
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3. Simulation

We developed an advanced integrated simulation platform using TRUCKSIM and SIMULINK
(see Fig. 3). TRUCKSIM is a sophisticated simulation software designed for modelling the dynamic
behaviour of commercial vehicles, including trucks, buses, and trailers. It provides a highly
accurate representation of vehicle handling, suspension systems, and tire characteristics, making
it an invaluable tool for engineers. The software allows for the simulation of various driving
scenarios, including road types, load conditions, and driver inputs, to analyse vehicle performance.
One of its key advantages is the ability to test vehicle designs virtually, reducing the need for costly
physical prototypes and real-world testing. TRUCKSIM provides a high-fidelity vehicle model that
captures detailed dynamics, including suspension, tire, and steering system characteristics. The
model incorporates key parameters such as vehicle mass, inertia, and braking system performance.
The vehicle model parameters used in the experiment are shown in Table 1. This high level of
accuracy allows for realistic simulations of vehicle behaviour in various driving conditions and
scenarios. As a result, the tire forces and TRFC generated in TRUCKSIM can be used as reference
values (RVs). The EHKF and AUKF are implemented in SIMULINK. To validate the proposed
approach, random Gaussian noise was added to the sensor signals, and tests were conducted on
asphalt as well as ice road surfaces. It should be noted that since a single-track model is selected,
the forces shown in the result figures are those for the front and rear axles, not the individual tire
forces, for the sake of consistency in validation. Additionally, the TRFC represents the average
TRFC for the front and rear wheels, rather than the TRFC for a single tire.

Fig. 3. Integrated simulation platform.

Table 1. Truck model parameters.

Symbol Value Symbol Value
𝑚 6900 kg 𝑇𝑓 1.975 m
𝐼𝑧 5757 kg · m2 𝑇𝑟 1.975 m
𝐿 𝑓 1.4 m ℎ 0.975 m
𝐿𝑟 2.5 m g 9.8 m/s2
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3.1. Tests on asphalt roads

A steering manoeuvre involving acceleration on asphalt roads is performed, with the TRFC
set at 0.85. The parameters chosen for tire force estimation in the EHKF method are as fol-
lows: the measurement noise is 𝑅 = diag [10, 10, 10, 10, 1, 1, 1, ], and the process noise is
𝑄 = diag [1, 1, 1, 1, 1, 1, 1, 1] · 0.01. The front wheel angle and vehicle velocity are shown in
Fig. 4a and Fig. 4b. From these two figures, we can see that the vehicle’s initial speed is 20 km/h,
after which it accelerates to nearly 70 km/h by the end of the simulation. Meanwhile, the vehicle
performs lane change manoeuvres during this time.

(a) (b)

Fig. 4. Vehicle state: a) front wheel angle on asphalt roads, b) vehicle speed on asphalt roads.

Figures 5a and 5b illustrate the estimated curves of longitudinal forces for the front and rear
axles. Figures 5c and 5d show the estimated lateral forces for the front and rear axles. The red
solid line represents the RV, while the green dashed line shows the axial forces calculated directly
from the Dugoff model and the noisy sensor signals. The blue solid line represents the axial forces
after filtering with the EHKF. We can observe that direct calculations using the tire model result
in significant fluctuations and deviations from the RV due to severe noise interference. Since the
noise is set randomly, applying the EHKF clearly shows that the filtered forces for both the front
and rear axles are much closer to the RV with reduced fluctuations. Table 2 displays the root mean
square error (RMSE) for both methods. It is evident that the RMSE for EHKF is lower than that
of the direct calculation based on the tire model. This is because the EHKF can minimize the
maximum error even when the statistical characteristics of the noise are unknown.

Table 2. RMSE of Different Methods on Asphalt Roads.

Symbol Dugoff model EHKF
𝐹𝑥 𝑓 29.61 18.41
𝐹𝑥𝑟 388.52 338.70
𝐹𝑦 𝑓 800.92 602.76
𝐹𝑦𝑟 1080.20 306.06

Figures 6a and 6b illustrate the TRFC estimation curves for the front and rear wheels,
respectively. The red solid line represents the RV, the green solid line shows the values estimated
using the UKF algorithm, and the blue solid line shows the values estimated using the AUKF
algorithm. As seen in the two figures, the actual TRFC is 0.85. In Fig. 6a, the TRFC estimation
curve of the front wheel only begins to rapidly approach the RV around 1.63 seconds. This is
because the heavy-duty vehicle is rear-wheel drive, and even though the vehicle is accelerating,
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(a) (b)

(c) (d)

Fig. 5. Forces of the front and rear axles: a) longitudinal force of the front axle on asphalt roads, b) the longitudinal force of
the rear axle on asphalt roads, c) lateral force of the front axle on asphalt roads, d) lateral force of the rear axle on asphalt

roads.

the excitation on the front axle is still minimal. The rapid convergence toward the RV after 1.63
seconds occurs because steering excitation starts to increase significantly at that point. Since the
noise is randomly assigned, the AUKF can dynamically adjust the noise covariance matrix 𝑅
allowing it to better track the RV, while the UKF estimation curve fluctuates more and does not
converge to the true value. In Fig. 6b, since the vehicle begins accelerating right away and the rear
axle is the driving axle, the estimation curves from both algorithms quickly approach the RV at the
start of the simulation. However, due to the lack of noise adaptability in the UKF, its estimation
accuracy is lower than that of the AUKF.

(a) (b)

Fig. 6. TRFC: a) for the front wheel on asphalt roads, b) for the rear wheel on asphalt roads.
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3.2. Test on ice roads

On icy and snowy roads, high speeds can easily lead to instability, so the vehicle speed is set
to 30 km/h, and the vehicle performs a non-standard lane change manoeuvre. Figures 7a and 7b
depict the changes in the front wheel steering angle and vehicle speed, respectively. The front
wheel steering angle is more irregular compared to the experiment on asphalt roads, while the
vehicle speed remains relatively stable at 30 km/h for constant-speed driving. The parameters for
the EHKF are as follows: 𝑄 = diag [1, 1, 1, 1, 1, 1, 1, 1] · 0.01, 𝑅 = diag [10, 10, 10, 10, 1, 1, 1, ].

(a) (b)

Fig. 7. Vehicle state: a) front wheel angle on ice roads, b) vehicle speed on ice roads.

In Fig. 8a and Fig. 8b, the estimated longitudinal forces for both the front and rear axles are
displayed. In Fig. 8c and Fig. 8d, the estimated lateral forces for the front and rear axles are shown.
The influence of random noise, which was introduced into the system, is clearly visible in these
graphs. The forces, when directly calculated using the tire model, exhibit considerable variations
and significant deviations from the RV. These discrepancies primarily arise due to the tire model’s
susceptibility to noise interference, making it challenging to obtain reliable estimations under
noisy conditions. When the EHKF is applied, a marked improvement in estimation precision
can be observed. The filtered force estimates on both the front and rear axles align much closer
with the RV, showing significantly fewer fluctuations. This demonstrates the robustness of the
EHKF which proves more effective at handling noise compared to direct calculations based on the
tire model. The EHKF is particularly adept at managing uncertainties even when the statistical
properties of the noise remain unknown. Its capability to minimize the maximum estimation error
is crucial for achieving this enhanced performance. A comparison of RMSE for both methods is
presented in Table 3. It is evident that the RMSE for the EHKF is notably lower than for the direct
method using the tire model. The ability of the EHKF to adapt to random noise and produce more
accurate estimations, even under uncertain and dynamic conditions, underscores its superiority.

Table 3. RMSE of Different Methods on Ice Roads.

Symbol Dugoff model EHKF

𝐹𝑥 𝑓 88.90 45.58

𝐹𝑥𝑟 318.80 171.54

𝐹𝑦 𝑓 2797.50 2420.70

𝐹𝑦𝑟 1745.30 845.08
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(a) (b)

(c) (d)

Fig. 8. Forces for the front and rear axles: a) longitudinal force of the front axle on ice roads, b) the longitudinal force of
the rear axle on ice roads, c) lateral force of the front axle on ice roads, d) lateral force of the rear axle on ice roads.

The TRFC estimation curves for the front and rear wheels are illustrated in Fig. 9a and
Fig. 9b, respectively. Similar to the first experimental scenario, the TRFC of the front wheels only
rapidly approaches the RV after more than 5 seconds, while the TRFC for the rear wheels quickly
converges to the RV from the start. The reason for this behaviour is the same as in the asphalt road
experiment. Likewise, from both figures, we can see that the AUKF curves eventually converge to
the RV, whereas the UKF, lacking the ability to dynamically adapt to measurement noise, exhibits
greater fluctuations and fails to track the RV. Through the two experiments mentioned above, we
can observe that the proposed estimation scheme demonstrates adaptability to different noise
interferences and is capable of identifying the TRFC across various road surfaces.

(a) (b)

Fig. 9. TRFC: a) of the front wheel on ice roads, b) of the rear wheel on ice roads.
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4. Conclusion

In this work, a two-stage adaptive identification framework is proposed that combines EHKF and
AUKF, enabling accurate TRFC estimation under unknown and time-varying measurement noise
conditions. Initially, in the cases where the statistical characteristics of noise are unknown, the EHKF
combined with the tire model provides precise force estimations for both the front and rear axles.
Subsequently, considering the time-varying nature of noise, the AUKF, together with the vehicle
model and axial force data, is utilized to estimate the TRFC for the front and rear wheels. Simulation
tests conducted for various road surfaces demonstrate that the two-stage adaptive identification
scheme outperforms the unscented Kalman filter in terms of both accuracy and stability.

Since it is assumed that the model parameters are constant and known in advance during the
estimation process, there is an opportunity to further improve the robustness and flexibility of
the proposed framework. In the future, we aim to integrate parameter identification methods into
the estimation framework to address potential variations in model parameters. This integration
will allow the system to adapt more effectively to dynamic conditions, thereby enhancing the
algorithm’s overall performance and making it more applicable to real-world scenarios where exact
parameter knowledge may not always be available. Furthermore, while some experimental sites
and equipment are currently unavailable, plans are in place to conduct real-vehicle experiments as
soon as the required resources are accessible. These real-world tests will be essential to validate the
practicality and robustness of the proposed algorithm under actual operating conditions, ensuring
its applicability in diverse vehicle environments and road conditions.
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