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Abstract. The approach based on a special case of the Laplace transform, which allows to design multi-loop system is considered. The

tuning regulators program on the base of this approach is developed. The numerical example is shown.
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1. Introduction

One of the main current trends in the control theory is a multi-

loop systems design [1]. There are a lot of papers considering

this problem [2–4]. However, autotuning of such systems is

the more interesting and complicated problem. There is a pa-

per [5], where the adaptive control approach for the second

order system with a master model is considered. In the pa-

per [6] the regulator parameters tuning approach on the basis

of plural integration is considered. In the paper [7] the new

adaptive PI-regulator tuning approach without additional in-

formation about plant is suggested. All necessary information

is obtained from an impulse response of the plant.

The main disadvantage of these approaches is limitations,

which are caused by a regulator or the plant structure. So,

the multi-loop systems design problem is a topical issue, but

there is no universal solution.

The paper contains the multi-loop systems design ap-

proach based on the real Laplace transform.

2. Problem statement

Assume that the multi-loop system is put into consideration.

The multi-loop system mathematical model is shown in Fig. 1.

Fig. 1. Multi-loop system structure

Where W IP
i (s) – transfer function of invariable part of

i-th loop, i = 1, k, where k – number of control loops;

WREG
i (s) – regulator transfer function of i-th loop; Ki –

feedback coefficient of i-th loop; x(t) – input signal of a sys-

tem; yi(t) – response of i-th loop.

The problem is to tune automatically each loop regula-

tor in order to provide required quality of a main loop step

response.

Three-step solution of this problem is proposed:

• The first step: to define plant transfer function WP (s) and

to decompose it into blocks W IP
i (p).

• The second step is the master models WM
i (s) form, which

defines the quality of i -th loop.

• The third step is regulators WREG
i (s) tuning.

3. Real interpolation method

The real interpolation method is a mathematical base for the

problem solution. This method includes approaches and al-

gorithms for dynamical systems researching and is based on

real integral transform and interpolation procedures.

The real integral transform is defined by formula [8]:

F (δ) =

∞∫

0

f(t)e−δtdt, δ ∈ [C, ∞), C ≥ 0, (1)

where original function f(t) corresponds to image function

F (δ).

Formula (1) is called δ-transform.

Practically it is important that δ-transform can be inter-

preted as a special case of the Laplace transform

F (s) =

∞∫

0

f(t)e−stdt, s = δ + jω

and be obtained by the substitution of real variable δ instead

of complex variable s. This feature is very important for nu-

merical calculations as far as it allows reducing number of

calculations to half in comparison with the frequency method

because of calculations with the absence of the imaginary part

j =
√
−1.

4. Plant identification

To solve an identification problem of the system, all feedbacks

are disconnected, and regulators have forms WREG
i (p)=1,
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i = 1, k. Then test signal x(t) is given on the system in-

put and output signals yi(t) are obtained. On the basis of

obtained data and Eq. (2) the real transfer function is defined

Wyix(δ) =

τi∫

0

yi(t) · exp(−δt)dt

τi∫

0

x(t) · exp(−δt)dt

, (2)

where τi – signal yi(t) time observation.

So, the plant transfer function may have two forms:

WP (δ) = Wynx(δ), (3)

WP (δ) =

k∏

i=1

W IP
i (δ). (4)

On the basis of (3) and (4) it is possible to get dependency

between W IP
i (δ) and Wyix(δ).

W IP
1 (δ) = Wy1x(δ),

W IP
i =

Wyix(δ)

Wyi−1x(δ)
,

i = 2, k,

(5)

where Wyix(δ) the transfer function from input x to output

yi, in other words the transfer function of i-th loop.

According to (5) real transfer functions of each loop in-

variant parts are defined.

The following solution of an identification problem de-

fines W IP (δ) in a fractional rational form

W IP (δ) =
bmδm + bm−1δ

m−1 + ... + b1δ + b0

anδn + an−1δn−1 + ... + a1δ + 1
,

n ≥ m.

(6)

The problem of the structure identification that is defin-

ing orders of polynomials numerator m and denominator n is

solved on the base of the approach described in paper [9].

Let us consider the equation:

lim
δ→∞

W IP (δ)

W IP (g · δ) = gn−m, (7)

where g > 1 – a real number. From expression (7) the fol-

lowing equation is obtained:

γ = n−̂m =
ln(gn−m)

ln(g)
. (8)

The real number obtained from (8) is rounded up. With

the help of the obtained structure parameters estimation γ it is

possible to form the transfer function structure identification

algorithm. To make this, it is necessary to express a numera-

tor m order through a denominator n order and the estimation

value γ

m = n − γ, n =

{
1, 2, ... if γ = 0,

γ, γ + 1, ... if γ 6= 0.
(9)

The value n is a free argument in the last equation. The

existence of the fixed parameter γ, allows to get rid of ex-

amination of a set of transfer function structures, which do

not meet the requirements of Eq. (9). The parameter n value

enumeration should be continued until a relative identification

error satisfies the specified criterion within the time domain.

This is the solution of the structure identification problem.

After the transfer function numerator and denominator

defining it is necessary to define coefficients

a1 ÷ an, b0 ÷ bm.

To this effect the Eq. (6) should be transformed into the linear

equations system with unknown variables (coefficients

a1 ÷ an, b0 ÷ bm)

and predefined interpolation nodes

δj , j = 1, ν,

ν = n + m + 1.

Nodes are defined by the equation δj = j · δ1. The value

of δ1 is taken according to Eq. (8)

δ1 =
− ln ((0.01 ÷ 0.05)/y(tst))

tst
, (10)

where y(tst) – output steady-state value, tst – settling time.

Then it is possible to obtain the system






bmδm
1 + bm−1δ

m−1
1 + ... + b1δ1 + b0 − anδn

1 W IP (δ1) − ... − a1δ1W
IP (δ1) = W IP (δ1),

bmδm
2 + bm−1δ

m−1
2 + ... + b1δ2 + b0 − anδn

2 W IP (δ2) − ... − a1δ2W
IP (δ2) = W IP (δ2),

.........................................................................................................................

bmδm
ν + bm−1δ

m−1
ν + ... + b1δν + b0 − anδn

ν W IP (δν) − ... − a1δνW IP (δν) = W IP (δν).

(11)
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The result of a system solving is the plant real transfer

function. To obtain a transfer function in the Laplace space it

is necessary to make a formal substitution s → δ.

5. Master transfer functions forming

The certain requirements to the step response in a multi-loop

system are made only to a main loop, obviously, that causes

master transfer functions WM (s) forming complexity. This

as a rule do not work for other loops any requirements. One

of the ways to make this problem solution more formal is to

consider the maximal time constant of the transfer function

W IP (δ). In the capacity of such a time constant the coeffi-

cient a1 is taken. It is known [1] that the dependency between

settling time tst and coefficient a1 has a view:

tst ≥ 3 · a1. (12)

On the base of expression (12) and using the Konovalov-

Orourke method [10] it is possible to form the master transfer

function

WM (p) =

α1

2
p + 1

α0p2 + α1p + 1
H,

where H – output steady-state value, α1, α0 – coefficients

defined by equations:

α0 =
[ln (0.01 · σ)]2

9

(tst)2

{
[ln (0.01 · σ)]

2
+ π2

}H, α1 =
6 · α0

tst
,

where σ = 100 · Hmax − H

H
– required overshoot, Hmax –

maximum output value.

6. Multi-loop system controllers design

The last step of the multi-loop system control system tuning is

a controller design. The controller design procedure consists

of one operation set. Controllers tuning are made consequently

from an inside loop to outside one. The solution of the design

problem is based on solving of the following equation

WOM (s) ∼= WREG(s) · W IP (s), (13)

where WOM (s) is an open-loop master transfer function. It

is defined from the equation:

WOM (s) =
WM (s)

1 − K · WM (s)
. (14)

In order to get Eq. (13) it is necessary to substitute the

value of feedback coefficient K to Eq. (14).

The value K can be chosen according to the expression

K = 1/H , to obtain the first order astaticism of the loop. In

this case the solution of Eq. (13) is reduced to defining para-

meters and a structure of the transfer function WREG(p). As

a rule, the structure of a controller is known and the problem

is to define the parameters. So, according to the expression

(13) the controller transfer function is defined as

WREG(s) =
WOM (s)

W IP (s)
. (15)

Also, the controller transfer function has the following

form

WREG(s) =
bmsm + bm−1s

m−1 + .. + b1s + b0

ansn + an−1sn−1 + .. + a1s + 1
, n ≥ m.

(16)

From (15) and (16) the following expression is obtained

WOM (s)

W IP (s)
=

bmsm + bm−1s
m−1 + .. + b1s + b0

ansn + an−1sn−1 + .. + a1s + 1
. (17)

A real transfer function of a controller is obtained after

formal substitutionδ → s in (17).

By taking different values of δ = {δ1, δ2, ..., δν}, where

ν = n + m + 1, ν linear algebraic equation with ν unknown

parameters are received. Nodes δare spread on the analyti-

cal grid δj = j · δ1, j = 1, ν. The first node is defined by

expression (10).

The design problem solution is the solution of the system

(11) in which W IP (δ) is substituted by Eq. (15).

On the basis of the obtained results the multi-loop system

design program was developed that contains blocks: “Identi-

fication” and “Master model forming and controller design”.

7. Numerical example

Assume that the two-loop control system is considered. The

structure of the controlled object is shown in Fig. 2.

Fig. 2. Structure of the controlled object

To provide identification, the input test signal x(t) is used

and output signals y1(t) and y2(t) are obtained (Fig. 3).

Fig. 3. Input signal and system responses

Figure 3 shows that the time of observation for signals

y1(t) and y1(t) should be τ1 = τ2 = 0.75 seconds, respec-

tively. According to expression (8) the structure of transfer
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functions W
(
pδ), W IP

1 (δ) and W IP
2 (δ) are defined and val-

ues γp = 3, γIP
1 = 2, γIP

2 = 1 are found. Finally, parameters

that describe structures of models are:

– np = 3, mp = 0 for transfer function Wp(δ) ;

– nIP
1 = 2, mIP

1 = 0 for transfer function W IP
1 (δ);

– nIP
2 = 1, mIP

2 = 0 for transfer function W IP
2 (δ).

For all the calculations associated with the identification

interpolation, the node δ1 is taken according to (10) and has

the value δ1 = 6.14.
Using (2) and (3) to find W

(
pδ) it is necessary to form the

linear equations system (11). As a result of identification the

transfer function is obtained:

WP (δ) =
4.38

2.32 · 10 - 4δ3 + 6.82 · 10 - 3δ2 + 0.117δ + 1
.

To decompose transfer function W
(
pδ) into W IP

1 (δ) and

W IP
2 (δ) expression (5) is used. After this linear equations

system (11) is formed for each transfer function. The result

of decomposition is:

W IP
1 (δ) =

1.49

3.47 · 10−3δ2 + 0.05δ + 1
,

W IP
2 (δ) =

2.94

0.067δ + 1
.

According to (12) performance and other requirements for

each control loop are defined.

The requirements of first loop are tst
1 ≤ 0.3 s, H1 = 3,

σ1 ≤ 15%.

Fig. 4. Step responses

For second loop the requirements are: tst
2 ≤ 0.9 s, H2 =

1.5, σ≤
2 1%.

The obtained controllers transfer functions in the Laplace

space have views:

WREG
1 (s) =

0.148s2 + 5.394s + 74.68

6.99 · 10−4s2 + s
,

WREG
2 (p) =

0.075s + 0.784

s
.

The feedback coefficient for the first loop is K1 = 0.333
and for the second loop is K2 = 0.667.

There are step responses of first h1(t) and second h2(t)
loops in 8, which are considered separately.

Figure 4 shows that parameters of transients in control

loops are:

– First loop: tst
1 = 0.274 s, σ1 = 12.9%;

– Second loop: tst
2 = 0.869 s, σ2 = 0%.

Results of numeric example demonstrate that tuned con-

trollers provide the required level of performance and quality

in the multi-loop control system.

8. Conclusions

In the paper actuality of the self-tuning of multi-loop sys-

tem controller is shown. The aim is to develop mathematical

apparatus for designing multi-loop control systems. For this

purpose the approach based on a real integral transform is

proposed. A significant advantage of this approach consists in

capability of describing dynamical plants in a form of numer-

ic real values. The approach allows solving the plant iden-

tification problem and the regulator designing problem. The

numerical example is considered.
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