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Abstract. The Riemann-Liouville, Caputo and Grünwald-Letnikov fractional order difference operators are discussed and used to state and

solve the controllability problem of a nonlinear fractional order discrete-time system. It is shown that independently of the type of fractional

order difference, such a system is locally controllable in q steps if its linear approximation is globally controllable in q steps.
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1. Introduction

Considering the increase in practical use of fractional integro-

derivatives or fractional differences in systems modeling real

behaviors (see for example [1–3]), there has been recently

a growing interest in developing this topic, from both theo-

retical and practical points of view. The fractional calculus

in continuous and discrete cases includes different notions of

definitions of derivatives, e.g. Riemann-Liouville, Grünwald-

Letnikov, Caputo and generalized function approach [2, 4–8].

The aim of this paper is to study the problem of local con-

trollability of nonlinear discrete-time fractional order systems

with different notions of fractional differences. We use three

types of forward differences: the fractional Riemann-Liouville

type difference defined in [5], fractional Caputo type differ-

ence defined in [9, 10] and fractional Grünwald-Letnikov type

difference presented in [2, 11–13]. The obtained results are

based on [14, 15].

In order to find a solution of the controllability problem

stated for the considered fractional-order systems we use lin-

ear approximation of it. In this case the solution of the lin-

ear state-space equation is derived using a discrete version

of Mittag-Leffler two parameters matrix function. In case of

fractional Grünwald-Letnikov type difference, Kalman’s type

controllability condition is shown in [6]. Our main result in-

dicates that the nonlinear fractional order control system, for

any of the discussed fractional order difference operators, is

locally controllable in a finite number of steps if its linear

approximation is globally controllable in the same number of

steps. For the proof we use results obtained by Graves in [16]

and used by Walczak [17] to the controllability problem in a

continuous-time case.

2. Preliminaries

Let

Na := {a, a + 1, . . .}

for any real number a. For t ∈ R\Z− and α ∈ R the factorial

function is defined by

t(α) :=
Γ(t + 1)

Γ(t + 1 − α)
, (1)

where Z− = {−1,−2, . . .}, Γ is the Euler gamma function

and we use the convention that division at a pole yields zero.

Let α > 0. The α-th fractional sum for any function

ϕ : Na → R, is defined by, (follow [5]),

(

a∆−αϕ
)
(t) =

1

Γ(α)

t−α∑

s=a

(t − s − 1)(α−1)ϕ(s), (2)

where a∆−αϕ is defined for all t ∈ Na+α. We assume that
(

a∆0ϕ
)
(t) := ϕ(t). Observe that according to (2) we have

that (a∆−αϕ) (a + α) = ϕ(a).
Moreover, for ϕ(s) = (s− a+µ)(µ) holds, see [5, 9, 18],

(

a∆−αϕ
)
(t) =

Γ(µ + 1)

Γ(µ + α + 1)
(t − a)(µ+α) (3)

for any t ∈ Na+µ+α and µ 6∈ Z− with the convention that

division at a pole yields zero. In particular, if C is a constant,

then (3) implies that (a∆−αC) (t) =
C

Γ(α + 1)
(t − a)(α) for

t ∈ Na+α. The formula (3) can be also presented as, see [18,

19],

a+µ∆−α(t − a)(µ) = µ(−α)(t − a)(µ+α)

for any t ∈ Na+µ+α.

Proposition 1 [5]. Let ϕ be a real-valued function defined on

Na and let α, β > 0. Then,

(a+β∆−α(a∆−βϕ))(t) = (a∆−(α+β)ϕ)(t) =
(

a+α∆−β
(

a∆−αϕ
))

(t)

for any t ∈ Na+α+β .

We present three different approaches to defining fraction-

al differences. In the next section we use them as operators
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acting in control systems and show that for each kind of sys-

tem we have a similar controllability condition.

Definition 2 [9, 10]. Let α ∈ (0, 1] and ϕ : Na → R. The

α-th fractional Caputo type difference of the function ϕ is

defined as

(a∆α
∗
ϕ) (t) =

(

a∆−(1−α)∆ϕ
)

(t) =

1

Γ(1 − α)

t−(1−α)
∑

s=a

(t − s − 1)(−α)(∆ϕ)(s),

where t ∈ Na+(1−α) and (∆ϕ) (s) = ϕ(s + 1) − ϕ(s) is the

classical forward difference.

Definition 3 [5]. Let α ∈ (0, 1] and ϕ : Na → R. The α-th

fractional Riemann-Liouville type difference of the function

ϕ is defined as

(a∆αϕ) (t) = ∆
(

a∆−(1−α)ϕ
)

(t) , (4)

where t ∈ Na+(1−α).

Particularly for α = 1 we have that
(

a∆1
∗
ϕ
)
(t) =

(

a∆1ϕ
)
(t) = (∆ϕ) (t).

It can be shown (see [10]) that for any ϕ : Na → R the

following relation between Riemann-Liouville type difference

operator and Caputo type difference operator is true.

(a∆αϕ) (t) = (a∆α
∗
ϕ) (t) +

(t − a)(−α)

Γ(1 − α)
ϕ(a) .

The third definition of a fractional order difference can be

presented as follows, see for example [2, 11, 12].

Definition 4. Let α be any real number. The α-th fractional

Grünwald-Letnikov type difference is defined as

(

a∆α
♮ ϕ

)
(t) =

t−a∑

s=0

(−1)s

(
α

s

)

ϕ(t − s),

where t ∈ Na and
(
α
s

)
=

Γ(α + 1)

Γ(s + 1)Γ(α − s + 1)
is the bino-

mial coefficient.

In [4] versions of solutions of scalar fractional order dif-

ference equation are given. We adopt them to multi-variable

fractional order linear case and define Mittag-Leffler matrix

functions as well. Firstly let us introduce the Mittag-Leffler

matrix function.

Definition 5. Let A be a square real matrix of degree n and

let β, z ∈ C with Re(α) > 0. The discrete Mittag-Leffler

two-parameters matrix function is defined as

E(α,β) (A, z) =
∞∑

k=0

Ak (z + (k − 1)(α − 1))(kα)(z + k(α − 1))(β−1)

Γ(αk + β)
.

For β = 1 we write

E(α) (A, z) = E(α,β=1) (A, z) =
∞∑

k=0

Ak (z + (k − 1)(α − 1))(kα)

Γ(αk + 1)
.

For our purpose we use the following form for the Mittag-

Leffler two-parameters matrix function:

E(α,α−1) (A, z) =

∞∑

k=0

Ak (z + k(α − 1))(kα+α−1)

Γ((k + 1)α)
(5)

and the following technical lemma.

Lemma 6 [4]. For α > 0, k ∈ N and f : N0 → R holds

(

0∆
−α

(

0∆
−kαf

))
(t + kµ) =

(

0∆
−(k+1)αf

)

(t + kµ).

3. Fractional initial value problems

In this Section we discuss the problem of solvability of frac-

tional order systems of difference equations, for each of the

operators defined in Preliminaries. For the Caputo type frac-

tional difference we use the following form of systems, simi-

larly to scalar case in [4, 9].

Theorem 7. Let f : N0×Rn → Rn, α ∈ (0, 1] and µ = α−1.

The initial value problem (IVP)

(µ∆α
∗
x) (t) =f(t, x(t + µ)), t ∈ N0, (6)

x(µ) = x0, x0 ∈ R
n, (7)

has the unique solution given by the recurrence formula

x(t) = x0 +
(

0∆
−αf

)
(t) =

x0 +
t−α∑

s=0

(t − s − 1)(α−1)

Γ(α)
f(s, x(s + µ)),

where t ∈ Nα = {α, α + 1, . . .} and f(s) = f(s, x(s + µ)).

Proposition 8. In IVP problem (6)–(7), let the function f

have values defined by f(t, x) = Ax + Bu(t), where A ∈
Rn×n, B ∈ Rm×n, α ∈ (0, 1], µ = α − 1 and u(t), t ∈ N0,

is a fixed control. The linear initial value problem

(µ∆α
∗
x) (t) = Ax(t + µ) + Bu(t), t ∈ N0,

x(µ) = x0, x0 ∈ R
n,

has the unique solution given by the formula

x(t) = E(α) (A, t)x0 +

t−α∑

s=0

E(α,α−1) (A, t − σ(s)) Bu(s),

(8)

where t ∈ Nµ and σ(s) := s + 1.

Proof. We only need to apply the method of successive ap-

proximations as it was done in [4] using the crucial power

rule formula. Then, let us define the following sequence. Set

x0(t) = x0 and

xm(t) = x0 + A
(

0∆
−αxm−1

)
(t + µ) + B

(

0∆
−αu

)
(t),

where m ∈ N and xm−1(s) = xm−1(s+µ) ∈ Rn. For m = 1
we have

x1(t) =

(

I + A
t(α)

Γ(α + 1)

)

x0 + B
(

0∆
−αu

)
(t).
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Next for m = 2:

x2(t) =

(

I + A
t(α)

Γ(α + 1)
+ A2 (t + µ)(2α)

Γ(2α + 1)

)

x0

+B
(

0∆
−αu

)
(t) + AB

(

0∆
−2αu

)
(t + µ).

Using Lemma 6 and taking m → ∞ we obtain the direct

solution

x(t) = E(α) (A, t)x0

+

∞∑

k=1

Ak−1B
(

0∆
−kαu

)
(t + (k − 1)µ).

Then

x(t) = E(α) (A, t)x0

+

∞∑

k=0

Ak 1

Γ(kα + α)

t−α∑

s=0

(t + kµ − σ(s))(kα+µ)Bu(s).

Finally we get the formula (8).

For the Riemann-Liouville type fractional difference we

use the following form of systems, similarly to the scalar case

in [18].

Theorem 9. Let f : N0×Rn → Rn, α ∈ (0, 1] and µ = α−1.

The initial value problem (IVP)

(µ∆αx) (t) = f(t, x(t + µ)), t ∈ N0, (9)

x(µ) = x0, x0 ∈ R
n, (10)

has the unique solution given by the recurrence formula

x(t) =
t(µ)

Γ(α)
x0 +

(

0∆
−αf

)
(t) =

t(µ)

Γ(α)
x0 +

t−α∑

s=0

(t − s − 1)(α−1)

Γ(α)
f(s, x(s + µ)),

(11)

for any t ∈ Nµ and f(s) = f(s, x(s + µ)).

Proposition 10. In IVP problem (9)–(10), let the function

f have values defined by f(t, x) = Ax + Bu(t), where

A ∈ Rn×n, B ∈ Rm×n, α ∈ (0, 1], µ = α − 1 and

u(t), t ∈ N0, is a fixed control. The linear initial value prob-

lem

(µ∆αx) (t) = Ax(t + µ) + Bu(t), t ∈ N0,

x(µ) = x0, x0 ∈ R
n,

has the unique solution given by the formula

x(t) = E(α,α−1) (A, t)x0

+
t−α∑

s=0

E(α,α−1) (A, t − σ(s)) Bu(s),
(12)

for any t ∈ Nµ.

Proof. We use a similar method as in the proof of Proposi-

tion 8. Starting with the recurrence formula (11) we define

the following sequence. Set

x0(t) =
t(α−1)

Γ(α)
x0

and

xm(t) =
t(α−1)

Γ(α)
x0 + A

(

0∆
−αxm−1

)
(t) + B

(

0∆
−αu

)
(t),

where m ∈ N and xm−1(s) = xm−1(s+µ) ∈ R
n. For m = 1

we have

x1(t) =

(
t(α−1)

Γ(α)
I + A

(t + µ)(2α−1)

Γ(2α)

)

x0 +B
(

0∆
−αu

)
(t).

Next for m = 2:

x2(t)=

(
t(α−1)

Γ(α)
I+A

(t+µ)(2α−1)

Γ(2α)
+A2 (t+2µ)(3α−1)

Γ(3α)

)

x0

+ B
(

0∆
−αu

)
(t) + AB

(

0∆
−2αu

)
(t + µ).

Now using Lemma 6, formula (5) and taking m → ∞ we

obtain the direct solution

x(t) = E(α,α−1) (A, t)x0

+

∞∑

k=1

Ak−1B
(

0∆
−kαu

)
(t + (k − 1)µ).

Then

x(t) = E(α,α−1) (A, t)x0

+

∞∑

k=0

Ak 1

Γ(kα + α)

t−α∑

s=0

(t + kµ − σ(s))(kα+µ)Bu(s).

Finally we get the formula (12).

For the Grünwald-Letnikov type fractional difference we

use the following form of systems see [3, 11, 12, 20].

Theorem 11. Let f : N0 × Rn → Rn, α ∈ (0, 1]. The initial

value problem (IVP)
(

0∆
α
♮ x

)
(t + 1) = f(t, x(t)), t ∈ N0, (13)

x(0) = x0, x0 ∈ R
n, (14)

has the unique solution given by the recurrence formula

x(t + 1) = f(t, x(t)) −

t+1∑

s=1

(−1)s

(
α

s

)

x(t − s + 1)

for any t ∈ N0.

Proposition 12 [15, 21]. In IVP problem (13)–(14) let the

function f have values defined by f(t, x) = Ax + Bu(t),
where A ∈ Rn×n, B ∈ Rm×n, α ∈ (0, 1] and u(t), t ∈ N0, is

a fixed control. The linear initial value problem
(

0∆
α
♮ x

)
(t + 1) = Ax(t) + Bu(t), t ∈ N0,

x(0) = x0, x0 ∈ R
n,

has the unique solution given by the formula

x(t) = Φ(t)x0 +

t−1∑

s=0

Φ(t − s − 1)Bu(s)

for any t ∈ N0 and n×n dimensional state transition matrices

Φ(t), are determined by the recurrence formula

Φ(t + 1) = (A + Inα)Φ(t) +

t+1∑

i=2

(−1)i+1

(
α

i

)

Φ(t − i + 1)
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with Φ(0) = In, where In is n × n dimensional identity

matrix.

4. Controllability conditions

Let us consider nonlinear fractional order discrete-time con-

trol systems

(µ∆α
∗
x)(t) = f(x(t + µ), u(t)),

x(µ) = x0, t ∈ N0,
(15)

(µ∆αx)(t) = f(x(t + µ), u(t)),

x(µ) = x0, t ∈ N0,
(16)

(0∆
α
♮ x)(t + 1) = f(x(t), u(t)),

x(0) = x0, t ∈ N0.
(17)

Since some definitions and facts that we discuss are the same

for each type system, difference operators in the left hand side

in equations (15)–(17) are denoted by the common symbol

defined by its values

(aΥαx) (t) =







(µ∆α
∗
x)(t) or (µ∆αx)(t) for a = µ

(0∆
α
♮ x)(t + 1) for a = 0

.

Hence we consider the following common form for control

systems (15)–(17):

(aΥαx) (t) = f(x(t + a), u(t)),

x(a) = x0, t ∈ N0,
(18)

where x(·) ∈ Rn denotes the state vector, the values u(t)
of control u are elements of an arbitrary set Ω ⊆ Rm and

f : Rn × Ω → Rn. We assume that 0 ∈ intΩ and

A1. f is a (classically) differentiable function at (0, 0).
A2. f(0, 0) = 0.

The set Ω is usually called the control space and satisfies

the following property: Ω ⊆ Rm is such that Ω ⊆ intΩ and

any two points in the same connected component of Ω can

be jointed by a smooth curve lying in intΩ, except for end

points.

Let J0(m) denotes the set of all sequences U =
(u0, u1, . . .) where ut := u(t) ∈ Ω, t ∈ N0. Let γ(·, x0, U)
be defined by its values γ(t, x0, U) = x(t), t ∈ Na, and de-

note the state forward trajectory of system (18), i.e. a solution

which is uniquely defined by initial state x0 and control se-

quence U ∈ J0(m). From Theorems 7, 9, 11, it is clear that

for a given initial condition and for a given control sequence

U ∈ J0(m) there exists the unique solution of nonlinear frac-

tional difference equations, respectively (15)–(17).

The reachable set for the given initial state x0 at q steps,

denoted as Rq(x0) is defined as the set of all states to which

the given system can be steered from the prescribed initial

state at q steps by control U ∈ J0(m), i.e.

Rq(x0) := {x ∈ R
n : x = γ(q + a, x0, U), U ∈ J0(m)},

R0(x0) := {x0}.

Note that a set R(x0) :=
⋃

q∈N0

Rq(x0) is the set of all states

reachable from x0. This set is nonempty.

The following Definition extends the definition of lo-

cal controllability of semi-linear discrete-time systems given

in [15].

Definition 13. The fractional order discrete-time control sys-

tem given by (18) is locally controllable in q steps if there

exists a neighborhood V ⊂ Rn of the point x0 = 0 such that

V ⊂ Rq(x0).

Definition 14. The fractional order discrete-time control sys-

tem given by (18) is controllable in q steps if for zero initial

condition x0 = 0 we have that Rq(0) = Rn.

Considering the assumption A1 let us define matrices

A :=
∂f

∂x
(0, 0), B :=

∂f

∂u
(0, 0)

and consider a linear fractional order discrete-time system

(aΥαx) (t) = Ax(t+a)+Bu(t), x(a) = 0, t ∈ N0. (19)

This system is called a linear approximation of the nonlinear

one given by (18). Again, Propositions 8, 10, 12, imply that

for a given initial condition and for an arbitrary sequence of

controls U ∈ J0(m), there exists the unique solution of linear

approximation (19).

Lemma 15. The linear fractional order discrete-time control

systems

(µ∆α
∗
x) (t) = Ax(t + µ) + Bu(t),

x(µ) = x0 = 0, t ∈ N0

(20)

and

(µ∆αx) (t) = Ax(t + µ) + Bu(t),

x(µ) = x0 = 0, t ∈ N0

(21)

are controllable in q steps if and only if

rank[B, AB, . . . , Aq−1B] = n .

Proof. The idea of the proof comes from [6]. Let us consider

the control systems described by equations (20) or (21). From

the proof of Proposition 8 for system (20), from Proposition

10 for system (21) it follows that under zero initial conditions

xf = γ(q + µ, 0, U) =

q
∑

s=1

As−1B(0∆
−sα(t + (s − 1)µ)

= [B, A, . . . , Aq−1B]









(0∆
−αu)(t)

(0∆
−2αu)(t + µ)

...

(0∆
−qαu)(t + (q − 1)µ)









.

Putting

u0 = (0∆
−αu)(t),

u1 = (0∆
−2αu)(t + µ), . . . ,

uq−1 = (0∆
−qαu)(t + (q − 1)µ)
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and using classical arguments (as for example Kronecker-

Capelli’s Theorem) we can see that the above sys-

tem has the solution for every xf if and only if

rank[B, AB, . . . , Aq−1B] = n.

Lemma 16 [6]. The linear fractional order discrete-time con-

trol system
(

0∆
α
♮ x

)
(t + 1) = Ax(t) + Bu(t),

x(µ) = x0 = 0, t ∈ N0

(22)

is controllable in q steps if and only if

rank[B, Φ1B, . . . , Φq−1B] = n .

Corollary 17. Observe that using properties of rank of ma-

trices the following conditions are equivalent:

(i) The linear fractional order discrete time control system

(22) is controllable in q steps.

(ii) rank[B, Φ1B, . . . , Φq−1B] = n.

(iii) rank[B, AαB, . . . , Aq−1
α B] = n, where

Aα = A + Inα.

(iv) rank[B, AB, . . . , Aq−1B] = n.

From Lemma 16 and Corollary 17 we can present the

general result.

Proposition 18. The linear fractional order discrete time con-

trol system

(aΥαx) (t) = Ax(t+a)+Bu(t), x(a) = x0 = 0, t ∈ Na

is controllable in q steps if and only if

rank[B, AB, . . . , Aq−1B] = n .

Before stating the main results, let us recall some facts

from functional analysis that we shall use in proofs (based on

[14, 15]).

Lemma 19 [14, 16]. Let F : Z → Y be a nonlinear operator

from Banach space Z into a Banach space Y and such that

F (0) = 0, F has the Fréchet derivative dF (0) : Z → Y

whose image coincides with the whole space Y . Then the

image of the operator F contains a neighborhood of the point

F (0) ∈ Y .

Theorem 20. The nonlinear fractional order control system

(18) with zero initial condition is locally controllable in q

steps if its linear approximation (19) is globally controllable

in q steps.

Proof. Since the proof is similar to the one in the classical

nonlinear discrete-time case and in the semilinear fractional

order control system case given in [14, 15] we present only

sketch of it.

Let us consider a projection

π : J0(m) → R
m × R

m × . . . × R
m

︸ ︷︷ ︸

q times

= (Rm)q,

U = (u0, u1, . . .) 7→ (u0, u1, . . . , uq−1).

Let the operator F : (Rm)q → Rn = Y transform a finite

sequence of controls π(U) into the space of solutions in q

steps to system (18). More precisely operator F is defined as

(F ◦ π)(U) = γ(q + a, 0, U), (23)

where γ(q + a, 0, U) is the solution in q steps to system (18)

corresponding to a sequence of controls U ∈ J0(m) and zero

initial condition. Then

dF (0)(π(U)) = γ(q + a, 0, U),

where dF (0) is the Fréchet derivative of map F at 0 and

γ(q + a, 0, U) is the solution in q steps to the linear sys-

tem (19) corresponding to the same sequence of controls

U ∈ J0(m) as in (23) and with respect to zero initial con-

dition. Assumption A2 implies that F (0) = 0. If the linear

approximation (19) of the system (18) is controllable in q

steps, then Im(dF (0)) = Rn. Hence, by Lemma 19, the map

F covers a neighborhood of 0 ∈ Rn and, by Definition 13,

the system (18) is locally controllable in q steps.

Example 21. Let us consider the system

(aΥαx) (t) =

[

x2(t + a)

−0.1 sinx1(t + a)

]

+

[

0

1

]

u(t) . (24)

Then its linearization has the following matrices:

A =

[

0 1

−0.1 0

]

, B =

[

0

1

]

.

It is easily seen that the system (aΥαx) (t) = Ax(t + a) +
Bu(t) is controllable in q = 2 step. As we take the initial con-

dition x0 = 0, we have two different approaches. We compare

two difference models by taking constant control u(t) ≡ −0.1.

Moreover we take the order α = 0.8. Solutions are presented

on Figs. 1 and 2.

Fig. 1. Comparison of two trajectories of the nonlinear system from

Example 21 and for Caputo type operator aΥ
0.8

x =(−0.2) ∆
0.8

x.

For ten steps and nonlinear case – “crosses” and its linearization –

“boxes”, both for u ≡ −0.1.
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Fig. 2. Comparison of two trajectories of the nonlinear system from

Example 21 for Grünwald-Letnikov type operator aΥ
0.8

x =0 ∆
0.8
♮ x.

For ten steps and nonlinear case – “crosses” and its linearization –

“boxes”, both for u ≡ −0.1.

5. Conclusions

In the paper there have been presented three approaches to a

definition of forward fractional order difference, namely the

Riemann-Liouville, Caputo and Grünwald-Letnikov fraction-

al order operators. The problem of existence of solutions to

initial value problems for linear and nonlinear fractional order

systems with left hand side given by each one of these op-

erators have been shown. Obtained results have been used in

the problem of controllability of linear approximation of non-

linear discrete-time fractional order systems. It occurs that

for each case of a difference fractional operator the similar

Kalman condition can be proved. Moreover, the result stated

in [14] for continuous-time case and for semi-linear fractional

order control systems stated in [15] can be extended on the

whole class of nonlinear discrete-time fractional order sys-

tems.
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