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Observer-based fault estimation
for linear systems with distributed time delay

ANNA FILASOVÁ, DANIEL GONTKOVIČ and DUŠAN KROKAVEC

The paper is engaged with the framework of designing adaptive fault estimation for lin-
ear continuous-time systems with distributed time delay. The Lyapunov-Krasovskii functional
principle is enforced by imposing the integral partitioning method and a new equivalent delay-
dependent design condition for observer-based assessment of faults are established in terms of
linear matrix inequalities. Asymptotic stability conditions are derived and regarded with respect
to the incidence of structured matrix variables in the linear matrix inequality formulation. Sim-
ulation results illustrate the design approach, and demonstrates power and performance of the
actuator fault assessment.

Key words: adaptive fault estimation, distributed time delay systems, Lyapunov-
Krasovskii functional, integral partitioning technique, time delay segmentation, linear matrix
inequalities

1. Introduction

The use of Lyapunov method for stability analysis of the time delay systems has been
ever growing subject of interest, starting with the pioneering works of Krasovskii [14],
[15]. Usually nowadays, for the stability issue, different kind of modified Lyapunov-
Krasovskii functionals are used to obtain delay-dependent stabilization. The results
based on these functionals are applied to controllers synthesis, as well as to state ob-
servers design. Much research was done, and different stability criteria were derived for
systems with time-delays in state variables (e.g. [7], [13], [17], [20]), especially formu-
lated with respect to linear matrix inequality (LMI) principles. Some progress review in
this research arrea can be found, e.g., in [19], [24], [26].

Systems with distributed time delays are applied e.g. in the modeling of combus-
tion chambers rocket motor with pressure feeding [4], [25]. Because of the importance
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3574. E-mails: anna.filasova@tuke.sk, daniel.gontkovic@tuke.sk, dusan.krokavec@tuke.sk

The work presented in this paper was supported by VEGA, the Grant Agency of Ministry of Education
and Academy of Science of Slovak Republic, under Grant No. 1/0256/11. This support is very gratefully
acknowledged.

Received 29.12.2012.
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of such systems, growing attention is devoted to studying distributed delay systems in
recent years. Reflecting the fact that standard time-delay control representation schemes
are not complete related to systems with distributed time delays, some alternative sta-
bility conditions are derived [10], [12], [21]. The readers are referred to [3], and the
reference therein, for recent reports about the stability analysis of these systems.

The presented approach to observer-based adaptive actuator fault estimation ex-
ploits an extended family of Lyapunov-Krasovskii functionals, established by introduc-
ing triple integral terms [22], and the stability conditions are formulated with respect
to the use of structured matrix variables and integral partitioning method [8]. Exploiting
the duality principle to control law parameters design conditions [2], [5], and considering
the standard approaches to observer-based fault estimation for the linear systems with
discrete time-delay [1], [11], [24], the author’s results, presented in [6], are improved
and generalized with respect to the linear systems with distributed time delay. Because
of using Lyapunov-Krasovskii functional, only sufficient conditions in terms of LMIs
for estimator stability are obtained.

The outline of this paper is as follows. Section 2 introduces the model of continuous-
time linear multi-input, multi-output (MIMO) systems with distributed time delays, as
well as the proposed principle for the actuator or component faults assessment, and in
Section 3 the preliminary results are presented. According to the system model, Sec-
tion 4 discusses and proves the performance of the separation principle for systems with
distributed time delays and preserves the desired properties for fault estimation. In ac-
cordance to the observer-based fault estimation asymptotic stability, the LMI form of
design conditions is introduced in Section 5, specifically formulated to respect the struc-
tural LMI variables implementation in LMI solvers. A numerical example is given in
Section 6, to illustrate basic properties of the proposed method, and Section 7 presents
some concluding remarks.

Throughout the paper, the following notations are used: xxxT , XXXT denotes the transpose
of the vector xxx and matrix XXX , respectively, diag[ · ] denotes a block diagonal matrix, for a
square matrix XXX > 0 (respectively XXX < 0) means that XXX is a symmetric positive definite
matrix (respectively, negative definite matrix), the symbol IIIn represents the n-th order
unit matrix, IN denotes the set of integers, IR the set of real numbers and IRn×r the set of
all n× r real matrices.

2. Problem formulation

The systems under consideration are MIMO dynamic systems with distributed time
delay. Without lose of generalization, in the state-space family, this class of systems is
represented by the set of equations

q̇qq(t) = AAAqqq(t)+AAAh

t∫
t−h

qqq(s)ds+BBBuuu(t)+EEE fff (t) (1)
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yyy(t) =CCCqqq(t) (2)

while initial conditions are

qqq(θ) = φ(θ), ∀θ ∈
⟨
−
(

h+
h
m

)
,0
⟩

(3)

where 0 < h ¬ hm, h ∈ IR is a value describing the magnitude of time-delay, m ¬ mm,
m ∈ IN is a partitioning factor, qqq(t) ∈ IRn, uuu(t) ∈ IRr, and yyy(t) ∈ IRp are vectors of the
system, input and output variables, respectively, fff (t) ∈ IRs is the unknown fault vector
and matrices AAA∈ IRn×n, AAAh ∈ IRn×n, BBB∈ IRn×r, CCC ∈ IRp×n, and EEE ∈ IRn×s are real matrices.

For the system (1)-(3), the following assumptions are considered:

i The value h of the distributed delay is known and constant.

ii The couple (AAA,BBB) is controllable and (1) is stabilized by the linear memoryless
state feedback control

uuu(t) =−KKKqqq(t), KKK ∈ IRr×n (4)

in such way that the faulty-free closed-loop system

q̇qq(t) = (AAA−BBBKKK)qqq(t)+AAAh

t∫
t−h

qqq(s)ds (5)

is asymptotically stable for given h and any initial state.

iii The unknown fault vector, changing unexpectedly when a fault occurs, is differ-
entiable and bounded, i.e., | fff (t)| < fff , fff is known, and the value of fff (t) is set to
zero until a fault occurs.

Note, design of the control algorithm (4) is not a subject of the paper and can be
found, e.g., in [5].

To estimate faults (actuator faults or system component faults), the adaptive state
estimator is proposed

q̇qqe(t) = AAAqqqe(t)+ JJJ(yyy(t)− yyye(t))+BBBuuu(t)+AAAh

t∫
t−h

qqqe(s)ds+EEE fff e(t) (6)

yyye(t) =CCCqqqe(t) (7)

where qqqe(t) ∈ IRn is the estimator state vector, yyye(t) ∈ IRp is the observed system output
vector, fff e(t) is an estimate of fff (t) and JJJ ∈ IRn×p is the estimator gain matrix. The state
estimator (6), (7), is combined with the law for the fault estimate updating of the form

ḟff e(t) = GGGHHHT eeey(t) (8)
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where HHH ∈ IRp×s is the law gain matrix and GGG = GGGT > 0, GGG ∈ IRs×s is a learning weight
matrix, being setting interactively.

The matrix parameters of the above given estimators have to be designed in such
way that ensures asymptotic convergence to zero of the estimation errors

eee f (t) = fff (t)− fff e(t), eeey(t) = yyy(t)− yyye(t). (9)

Moreover, assumption iii) implies that the derivative eee f (t) with respect to time can be
considered as

ėee f (t) =− ḟff e(t) (10)

while the initial conditions can be considered as qqqe(θ) = qqq(θ) for θ from (3), since the
selection of JJJ should ensure that the state estimator is stable, and so the influence of the
initial error decreases to zero asymptotically. Such adaptation law (8) ensures | fff e(t)|¬ fff
for all t if | fff e(ϑ)|¬ fff .

Based on (8), the main goal is to design the delay-dependent stability criterion of
observer-based fault estimation for distributed time-delay systems, using an integral de-
lay partitioning in a Lyapunov-Krasovskii functional.

3. Preliminary results

Assumption 1 The couple (AAA,CCC) is observable.

Proposition 1 If NNN is a positive definite symmetric matrix, and MMM is a square matrix of
the same dimension then

MMM−T NNNMMM−1 MMM−1 +MMM−T −NNN−1. (11)

Proof See, e.g., [6]

Proposition 2 (Schur complement lemma) Let SSS, QQQ=QQQT , RRR=RRRT , detRRR ̸= 0 are real
matrices of appropriate dimensions, then the next inequalities are equivalent[

QQQ SSS
SSST RRR

]
> 0 ⇔

[
Q−SR−1ST 0

0 R

]
> 0 ⇔ Q−SR−1ST > 0, R > 0. (12)

Proof See, e.g., [16].
The Schur complement lemma is needed in the observer design to deduce an LMI

feasible problem.

Proposition 3 (Jensen’s inequalities) Let f (xxx(p)), xxx(p) ∈ IRn, XXX = XXXT > 0, XXX ∈ IRn×n

is a real positive and integrable vector function of the form

f (xxx(p)) = xxxT (p)XXXxxx(p) (13)
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such that there exist well defined integrations
0∫

−c

t∫
t+r

f (xxx(p))dpdr > 0 (14)

t∫
t−c

f (xxx(p))dp > 0 (15)

for c > 0, c ∈ IR, t ∈ ⟨0,∞), then
0∫

−c

t∫
t+r

xxxT (p)XXXxxx(p)dpdr  2
c2

0∫
−c

t∫
t+r

xxxT (p)dpdr XXX
0∫

−c

t∫
t+r

xxx(p)dpdr (16)

t∫
t−c

xxxT (p)XXXxxx(p)dp 1
c

t∫
t−c

xxxT (p)dpXXX
t∫

t−c

xxx(p)dp (17)

respectively.

Proof See, e.g., [5], [9].
The integral inequalities, given in Proposition 3, are of crucial significance for the

observer-based adaptive actuator fault estimation stability analysis, which exploits a
Lyapunov-Krasovskii functional with double and triple integral terms, and will be used
in the proof of the main results in the paper. Note that Lyapunov-Krasovskii functional
with at least double integral terms has to be used to obtain the delay-dependent design
condition.

4. Separation principle

The state estimator should estimate system states based on the available input and
output information and preserve desired properties specified at the fault estimation prin-
ciple design stage.

Theorem 1 If no fault is occurred, the interconnection of the controlled system (1), (2)
and the observer (6), (7) is asymptotically stable only if each of these connected parts is
asymptotically stable.

Proof The plant (1), (2) and the observer (6), (7) can be written compactly as[
q̇qq(t)
q̇qqe(t)

]
=

[
AAA 000

JJJCCC AAA− JJJCCC

][
qqq(t)
qqqe(t)

]
+

+
t∫

t−h

[
AAAh 000
000 AAAh

][
qqq(r)
qqqe(r)

]
dr+

[
BBB
BBB

]
uuu(t)+

[
EEE 000
000 EEE

][
fff (t)
fff e(t)

] (18)
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q̇qq◦(t) = AAA◦qqq◦(t)+AAA◦
h

t∫
t−h

qqq◦(s)ds+BBB◦uuu(t)+EEE◦ fff ◦(t) (19)

where
qqq◦T (t) =

[
qqqT (t) qqqT

e (t)
]
, fff ◦T (t) =

[
fff T (t) fff T

e (t)
]

(20)

AAA◦ =

[
AAA 000

JJJCCC AAA− JJJCCC

]
, AAA◦

h =

[
AAAh 000
000 AAAh

]
(21)

BBB◦ =

[
BBB
BBB

]
, EEE◦ =

[
EEE 000
000 EEE

]
. (22)

Instead of writing a differential equation governing qqq(t) and qqqe(t), the extended system
behavior can be described using qqq(t) and the equations for the error vectors

eeeq(t) = qqq(t)−qqqe(t), eee f (t) = fff (t)− fff e(t). (23)

Thus, to perform the coordinate change, the congruence transform matrix TTT c can be
defined, with respect to (23), as

TTT c =

[
III 000
III −III

]
, TTT−1

c =

[
III 000
III −III

]
(24)

where, evidently, it yields

TTT cqqq◦(t) =

[
III 000
III −III

][
qqq(t)
qqqe(t)

]
=

[
qqq(t)
eeeq(t)

]
= qqq•(t) (25)

TTT cqqq◦(t) =

[
III 000
III −III

][
fff (t)
fff e(t)

]
=

[
fff (t)

eee f (t)

]
= fff •(t) (26)

and
qqq•T (t) =

[
qqqT (t) eeeT

q (t)
]
, fff •T (t) =

[
fff T (t) eeeT

f (t)
]
. (27)

Thus, multiplying the left-hand site of (19) by TTT c, it is obtained

TTT cq̇qq◦(t) = TTT cAAA◦TTT−1
c TTT cqqq◦(t)+TTT cBBB◦uuu(t)+TTT cAAA◦

h

t∫
t−h

qqq◦(s)ds+TTT cEEE◦ fff ◦(t) (28)

q̇qq•(t) = AAA•qqq•(t)+AAA◦
h

t∫
t−h

qqq•(s)ds+BBB•uuu(t)+EEE◦ fff •(t) (29)
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respectively, where a very elementary calculation gives

TTT cAAA◦
hqqq◦(t) =

[
AAAh 000
AAAh −AAAh

][
qqq(t)
qqqe(t)

]
= AAA◦

heee•(t) (30)

TTT cEEE◦
h fff ◦(t) =

[
EEE 000
EEE −EEE

][
fff (t)
fff e(t)

]
= EEE◦ fff •(t) (31)

and

AAA• = TTT cAAA◦TTT−1
c =

[
AAA 000
000 AAA− JJJCCC

]
, BBB• = TTT cBBB◦ =

[
BBB
000

]
. (32)

Note, (29) is an alternative description of the same connected system and contain the
same information as (18), since qqq(t), fff (t) and eeeq(t), eee f (t) uniquely determine qqqe(t),
fff e(t), respectively.

Inserting the control law (4), the open form of (29) is[
q̇qq(t)
ėeeq(t)

]
=

[
AAA−BBBKKK 000

000 AAA− JJJCCC

][
qqq(t)
eeeq(t)

]
+

+
t∫

t−h

[
AAAh 000
000 AAAh

][
qqq(r)
eeeq(r)

]
dr+

[
EEE 000
000 EEE

][
fff (t)

eee f (t)

]
.

(33)

Because of the block-diagonal structure of the connected system (33), the separation
property holds, i.e., the gain KKK of the state-feedback control and the state estimator gains
JJJ for the state observer, can be designed independently for the fault-free system. This
concludes the proof.

This result deserves an important remark. Evidently, combined with the law to update
the fault estimation, the matrix HHH may be designed only if any additional restriction is
established in the stability conditions.

5. Estimator parameter design

The results of the previous sections can be exploited to investigate the stabilizability
problem in the estimator design for systems with distributed time delays, subject to the
fault estimate updating constraint. It is shown that the corresponding delay-dependent
problem, defined in the sense of quadratic stability, can be formulated using structured
variables and explained in the terms of LMIs, conditioned by an matrix equality con-
straint.
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Theorem 2 The estimator system matrix is stable if for given h > 0, m > 1 exist sym-
metric positive definite matrices PPP,UUU ,VVV ∈ IRn×n, WWW ∈ IRmn×mn, matrices HHH ∈ IRp×s,
YYY ∈ IRn×p and a positive scalar ε > 0, ε ∈ IR such that

PPP = PPPT > 0, ε > 0, UUU =UUUT > 0, VVV =VVV T > 0, WWW =WWW T > 0 (34)[
∆∆∆11 ∗∗∗

YYY ◦TTT A −2b−2PPP+b−2VVV

]
< 0 (35)

EEET PPPEEE −EEETCCCT HHH = 000 (36)

with
∆∆∆11 = TTT T

I YYY ◦TTT A +TTT T
AYYY ◦T TTT I −TTT T

VVVV TTTV +TTT T
UUUU◦TTTU +TTT T

WWWW ◦TTTW (37)

TTTV = b−1
[

a2IIIn −IIIn

[
000 · · · 000

]
000

]
(38)

TTTU =

[
aIIIn 000
000 a−1IIIn

] IIIn 000
[

000 · · · 000
]

000

000 IIIn

[
000 · · · 000

]
000

 (39)

TTTW =

 000w

[
IIImn 000w

]
000w

[
000w IIImn

]  (40)

a =

√
h
m
, b =

h√
2m

(41)

UUU◦ =

[
UUU 000
000 −UUU

]
, WWW ◦ =

[
WWW 000
000 −WWW

]
, (42)

YYY ◦ =
[ [

PPP YYY
]

PPP
[

PPP · · · PPP
]

PPP
]

(43)

TTT A = diag

[ [
AAA
−CCC

]
AAAh diag

[
AAAh · · · AAAh

]
000

]
(44)

TTT I =
[

IIIn 000
[

000 · · · 000
]

000
]

(45)

where matrices YYY ◦ ∈ IRn×((m+2)n+p), WWW ◦ ∈ IR2mn×2mn, and UUU◦ ∈ IR2n×2n are the struc-
tured matrix variables, and TTT A ∈ IR((m+2)n+p)×(m+2)n, TTTU ∈ IR2n×(m+2)n, TTT I,TTTV ∈
IRn×(m+2)n, TTTW ∈ IR2mn×(m+2)n.

When the above conditions hold, the estimator gain matrix is given by

JJJ = PPP−1YYY (46)
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and the adaptive fault estimation algorithm is

fff e(t) = GGGHHHTCCC
t∫

t f

eeeq(r)dr (47)

where eeeq(t) is given in (23), and t f denotes the time instant when the fault occurs.

Proof By (33), with eee f (t) defined in (23), it yields

ėeeq(t) = (AAA− JJJCCC)eeeq(t)+AAAh

t∫
t−h

eeeq(s)ds+EEEeee f (t). (48)

Considering an additive constraint for eee f (t), the Lyapunov-Krasovskii functional is de-
fined as follows

v(eeeq(t)) = v0(eeeq(t))+ v1(eeeq(t))+ v2(eeeq(t))+ v3(eeeq(t)) (49)

where, with PPP = PPPT > 0, WWW =WWW T > 0, GGG = GGGT > 0, UUU =UUUT > 0, VVV =VVV T > 0, it is

v0(eeeq(t)) = eeeT
q (t)PPPeeeq(t)+ eeeT

f (t)GGG
−1eee f (t) (50)

v1(eeeq(t)) =
t∫

t− h
m

eeeT
p (s)WWWeeep(s)ds (51)

v2(eeeq(t)) =
0∫

− h
m

t∫
t+ϑ

eeeT
q (s)UUUeeeq(s)dsdϑ (52)

v3(eeeq(t)) =
0∫

− h
m

0∫
ϑ

t∫
t+λ

ėeeT
q (s)VVV ėeeq(s)dsdλdϑ (53)

and the integral partition is considered as follows

eeeT
p (t) =

t∫
t−h

eeeT
q (s)ds ∼

[
t∫

t− h
m

eeeT
q (s)ds

t− h
m∫

t− 2h
m

eeeT
q (s)ds · · ·

t−(m−1) h
m∫

t−h
eeeT

q (s)ds

]
(54)

eeeT
p (s)∼

[
eeeT

p1(s) eeeT
p2(s)

]
(55)

eeeT
p1(s) =

t∫
t− h

m

eeeT
q (s)ds, eeeT

p2(s) =

[
t− h

m∫
t− 2h

m

eeeT
q (s)ds · · ·

t−(m−1) h
m∫

t−h
eeeT

q (s)ds

]
. (56)
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Hence, the derivative of v(eeeq(t)) with respect to t is given by

v̇(eeeq(t)) = v̇0(eeeq(t))+ v̇1(eeeq(t))+ v̇2(eeeq(t))+ v̇3(eeeq(t)). (57)

Taking the first element time-derivative result and assuming that

ḟff e(t) = GGGHHHT eeey(t) = GGGHHHTCCCeeeq(t) (58)

then, with (10), (48), (54), it follows

v̇0(eeeq(t)) =

= eeeT
q (t)PPPėeeq(t)+ ėeeT

q (t)PPPeeeq(t)+ eeeT
f (t)GGG

−1ėee f (t)+ ėeeT
f (t)GGG

−1eee f (t) =

= [(AAA− JJJCCC)eeeq(t)+AAAheeep(t)+EEEeee f (t)]
T PPPeeeq(t)+

+eeeT
q (t)PPP [(AAA− JJJCCC)eeeq(t)+AAAheeep(t)+EEEeee f (t)]−

−eeeT
f (t)GGG

−1 ḟff e(t)− ḟff
T
e (t)GGG

−1eee f (t)

(59)

and, using (58), it is

eeeT
q (t)

[
(AAA− JJJCCC)T PPP+PPP(AAA− JJJCCC)

]
eeeq(t)+

+eeeT
q (t)PPPAAAheeep(t)+ eeeT

p (t)AAA
T
h PPPeeeq(t)+ eeeT

q (t)PPPEEEeee f (t)+ eeeT
f (t)EEE

T PPPeeeq(t)−

−eeeT
f (t)GGG

−1GGGHHHTCCCeeeq(t)− eeeT
q (t)CCC

T HHHGGGGGG−1eee f (t).

(60)

Setting
PPPEEE −CCCT HHH = 0 (61)

the effect of the fault estimation error eee f (t) to the state estimation error eeeq(t) is removed
and (60) is simplified as

v̇0(eeeq(t)) =

= eeeT
q (t)PPPAAAheeep(t)+ eeeT

p (t)AAA
T
h PPPeeeq(t)+ eeeT

q (t)
[
(AAA− JJJCCC)T PPP+PPP(AAA− JJJCCC)

]
eeeq(t).

(62)

Analogously, taking into consideration (17), (54), it yields

v̇1(eeeq(t)) =
d
dt

{ t∫
t− h

m

eeeT
p (s)WWWeeep(s)ds

}
= eeeT

p (t)WWWeeep(t)− eeeT
p

(
t − h

m

)
WWWeeep

(
t − h

m

)
(63)

and

v̇2(eeeq(t)) = d
dt

{ 0∫
− h

m

{ t∫
t+ϑ

eeeT
q (s)UUUeeeq(s)ds

}
dϑ

}
=

=
0∫

− h
m

eeeT
q (t)UUUeeeq(t)dϑ−

0∫
t− h

m

eeeT
q (t +ϑ)UUUeeeq(t +ϑ)dϑ =

= h
m eeeT

q (t)UUUeeeq(t)−
t∫

t− h
m

eeeT
q (s)UUUeeeq(s)ds

(64)
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v̇2(eeeq(t))¬ h
m eeeT

q (t)UUUeeeq(t)− m
h

0∫
t− h

m

eeeT
q (s)dsUUU

0∫
t− h

m

eeeq(s)ds =

= h
m eeeT

q (t)UUUeeeq(t)− m
h eeeT

p1(t)UUUeeep1(t)

(65)

respectively.
Under the same conditions

v̇3(eeeq(t)) = d
dt

{ 0∫
− h

m

0∫
ϑ

{ t∫
t+λ

ėeeT
q (s)VVV ėeeq(s)ds

}
dλdϑ

}
=

=
0∫

− h
m

0∫
ϑ

{
ėeeT

q (t)VVV ėeeq(t)− ėeeT
q (t +λ)VVV ėeeq(t +λ)

}
dλdϑ =

=
0∫

− h
m

−ϑėeeT
q (t)VVV ėeeq(t)dϑ−

0∫
− h

m

t∫
t+ϑ

ėeeT
q (s)VVV ėeeq(s)dsdϑ =

= 1
2(

h
m)

2ėeeT
q (t)VVV ėeeq(t)−

0∫
− h

m

t∫
t+ϑ

ėeeT
q (s)VVV ėeeq(s)dsdϑ

(66)

and, since (16), (54) implies,

0∫
− h

m

t∫
t+ϑ

ėeeT
q (s)VVV ėeeq(s)dsdϑ

 2
( h

m )
2

0∫
− h

m

t∫
t+ϑ

ėeeT
q (s)dsdϑVVV

0∫
− h

m

t∫
t+ϑ

ėeeq(s)dsdϑ =

= 2
( h

m )
2

0∫
− h

m

(
eeeq(t)− eeeq(t +ϑ)

)T dϑVVV
0∫

− h
m

(
eeeq(t)− eeeq(t +ϑ)

)
dϑ =

= 2
( h

m )
2

(
h
m eeeT

q (t)−
t∫

t− h
m

eeeT
q (s)ds

)
VVV
(

h
m eeeq(t)−

t∫
t− h

m

eeeq(s)ds
)
=

= 2
( h

m )
2

(
h
m eeeT

q (t)− eeeT
p1(t)

)
VVV
( h

m eeeq(t)− eeep1(t)
)

(67)

then

v̇3(eeeq(t))¬
1
2
(

h
m
)2ėeeT

q (t)VVV ėeeq(t)−
2

( h
m)

2

( h
m

eeeT
q (t)− eeeT

p1(t)
)

VVV
( h

m
eeeq(t)− eeep1(t)

)
. (68)

Hence, expressing with respect to (56), (55) that

eeep(t −
h
m
) = eeep2(t)+

t−h∫
t−h− h

m

eeep(s)ds = eeeT
p2(t)+ eeeT

p3(t) (69)
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constructing the composite vector

eee◦T (t) =
[

eeeT
q (t) eeeT

p1(t) eeeT
p2(t) eeeT

p3(t)
]

(70)

and introducing the notation

TTT ◦
A =

[
(AAA− JJJCCC) AAAh

[
AAAh · · · AAAh

]
000

]
(71)

then, using (45), v̇0(eeeq(t)) can be written as

v̇0(eeeq(t)) = eee◦T (t)
(
TTT T

I PPPTTT ◦
A +TTT ◦T

A PPPTTT I
)

eee◦(t). (72)

Same as above, using (40), it yields

v̇1(eeeq(t))¬ eee◦T (t)TTT T
W

[
WWW 000
000 −WWW

]
TTT T

W eee◦(t) = eee◦T (t)TTT T
WWWW ◦TTTW eee◦(t) (73)

and with (39)

v̇2(eeeq(t))¬ eee◦T (t)TTT T
U

[
UUU 000
000 −UUU

]
TTTU eee◦(t) = eee◦T (t)TTT T

UUUU◦TTTU eee◦(t). (74)

Inserting (48) and denoting

eeec(t) = (AAA− JJJCCC)eeeq(t)+AAAheeep(t) (75)

VVV ◦ = PPP−1VVV PPP−1 (76)

then, with respect to (61), it yields

ėeeT
q (t)VVV ėeeq(t) = (eeec(t)+EEEeee f (t))

T VVV (eeec(t)+EEEeee f (t)) =

= (PPPeeec(t)+PPPEEEeee f (t))
T VVV ◦ (PPPeeec(t)+PPPEEEeee f (t))


(
PPPeeec(t)+(PPPEEE −CCCT HHH)eee f (t)

)TVVV ◦(PPPeeec(t)+(PPPEEE −CCCT HHH)eee f (t)
)
=

=
(
PPPAAAheeep(t)+PPP(AAA− JJJCCC)eeeq(t)

)TVVV ◦(PPPAAAheeep(t)+PPP(AAA− JJJCCC)eeeq(t)
)

(77)

or, equivalently, with the notation
YYY = PPPJJJ (78)

ėeeT
q (t)VVV ėeeq(t)¬

(
PPPAAAheeep(t)+(PPPAAA−YYYCCC)eeeq(t)

)TVVV ◦(PPPAAAheeep(t)+(PPPAAA−YYYCCC)eeeq(t)
)
. (79)

Thus, using (43), (44), and (38), (41), respectively, it yields

(PPPAAA−YYYCCC)eeeq(t)+PPPAAAheeep(t) = YYY ◦TTT Aeee◦(t) (80)
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√
2

m
h

(
h
m

eeeq(t)− eeep1(t)
)
= TTTV eee◦(t) (81)

and the last term v̇3(eeeq(t)) in (68) can be written as

v̇3(eeeq(t))¬ eee◦T (t)
(
TTT T

AYYY ◦T b2VVV ◦YYY ◦TTT A −TTT T
VVVV TTTV

)
eee◦(t). (82)

To incorporate (78) into (71), the matrix TTT ◦
A is written as

TTT ◦
A = PPP−1

[
PPP(AAA− JJJCCC) PPPAAAh

[
PPPAAAh · · · PPPAAAh

]
000

]
= PPP−1YYY ◦TTT A (83)

and with (83) so (72) takes the form

v̇0(eeeq(t)) = eee◦T (t)
(
TTT T

I YYY ◦TTT A +TTT T
AYYY ◦T TTT I

)
eee◦(t). (84)

Therefore, the derivative of v(eeeq(t)) can be written as

v̇(eeeq(t))¬ eee◦T (t)PPP◦eee◦(t)< 0 (85)

PPP◦ = TTT T
I YYY ◦TTT A +TTT T

AYYY ◦TTT I −TTT T
VVVV TTTV+

+TTT T
UUUU◦TTTU +TTT T

WWWW ◦TTTW +TTT T
AYYY ◦T b2VVV ◦YYY ◦TTT A < 0.

(86)

It is noticed, as (76) implies that VVV ◦ depends on PPP−1 that (86) is a nonlinear matrix
inequality, and it is necessary to transform (86) into the LMI form. Therefore, using
Schur complement, (86) is [

∆∆∆11 TTT T
AYYY ◦T

YYY ◦TTT A −b−2PPPVVV−1PPP

]
¬ 0 (87)

where ∆∆∆11 is given in (37). Using (11), the item in the bottom right-hand corner of (87)
is approximated as

−b−2PPPVVV−1PPP¬−b−22PPP+b−2VVV . (88)

Evidently, with (88), now (87) implies (35).
Since (61) is generally singular, to obtain a more regular expression the left-hand

side of (61) can be pre-multiplied by EEET , i.e.,

EEET PPPEEE −EEETCCCT HHH = 0 (89)

which implies (36). This concludes the proof.

Remark 1 To overcome equality problems in LMI solvers, instead of the equlity (36)
the inequality

2EEETPPPEEE −HHHTCCCEEE −EEETCCCTHHH + εIIIs < 0 (90)

can be placed into LMIs design conditions. It is obvious that for enough small ε > 0,
ε ∈ IR, (89) implies (90).
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6. Illustrative example

To illustrate the proposed method, the system described by (1), (2) is considered,
where

AAA =

 2.6 0.0 −0.8
1.2 0.2 0.0
0.0 −0.5 3.0

 , CCC =

[
1 2 1
1 1 0

]

AAAh =

 0.00 0.02 0.00
0.00 0.00 −1.00

−0.02 0.00 0.00

 , BBB = EEE =

 1 3
2 1
1 1

 .

Setting m = 2, and solving (34)-(36) with respect the LMI matrix variables PPP, UUU , VVV ,
WWW , HHH, and YYY using Self-Dual-Minimization (SeDuMi) package [18] for Matlab, the
estimator parameter design problem was solved as feasible and regular up to h ¬ 3.4 s.
Illustrating for h = 1.5s, conditioned by resulting positive definite matrices UUU , VVV , WWW , the
design parameters were

PPP =

 0.2979 −0.0517 −0.2042
−0.0517 0.4942 0.2356
−0.2042 0.2356 0.2742

 , YYY =

 −1.0355 2.2128
1.3281 −0.8093
1.9446 −2.5751



JJJ =

 5.9707 −3.2030
−3.7022 6.1622
14.7167 −17.0679

 , ρ(AAAe) =
{

−1.7745 −4.3339±1.7892i
}

HHH =

[
1.0752 −0.0697

−1.1919 0.7007

]
, GGG =

[
1.50 4.75
4.75 10.00

]
ensuring the stable eigenvalue spectrum of the estimator.

For simulation purposes only, the equilibrium of the system was stabilized by the
feedback controller

uuu(t) =−KKKqqq(t)

where, using the method proposed in [5] which offers the possibility to design the linear
state controller for the linear systems with distributed time-delay, the gain matrix was
computed as

KKK =

[
−6.7996 −5.4356 25.7509

5.3858 3.4324 −14.7765

]
.

In simulations was considered the fault which doesn’t cause closed-loop system insta-
bility, modeled by a fault starting at any time instant in the system equilibrium state.
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Figure 1. The second actuator fault and its estimation

Applying the above designed observer-based actuator fault estimation, the observer fault
response is given in Fig. 1. This figure presents the fault signal, as well as its estimation,
reflecting a single actuator fault in the the second actuator, starting at the time instant
t = 30 s and continuing during the time 20 s. Note that equivalent results are obtained
for the system working in a forced regime.

From the simulation results of Fig. 1 it can be found that the errors between the
signals reflecting a single actuator fault and the observer approximate ones tends to zero.
Moreover, the states of the system converge to the equilibrium when the actuator fault
disappeared, via the used controller.

7. Concluding remarks

Design conditions for observer-based fault estimation, introduced and explained with
respect to formal limitations triggered by the existence of structured matrix variables in
LMIs, are derived in the paper. The integral partitioning technique, as well an extended
version of Lyapunov-Krasovskii functional, is used to reduce the conservatism, and to
regularize the distributed delay dependent stability condition. Sufficient conditions are
established in terms of LMI as a convex LMI problem, and the manipulation is accom-
plished in the manner giving the design conditions with guaranty of asymptotic stability
of the observer-based adaptive actuator fault estimation.

The algorithm is enough robust to the system time-delay value h in that sense that,
for given m, there exists such upper bound of h that the design task is feasible. The con-
vergence of fault estimation dynamics can be modified by suitable choice of the learning
weight matrix. Presented illustrative example confirms the effectiveness of the proposed
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design method. In particular, with the use of such modification of Lyapunov-Krasovskii
functional, it shows how to adapt the standard approaches to design optimal matrix pa-
rameters of Luenberger-like state estimators for linear systems with distributed time de-
lays. Combined with the fault compensation, a fault tolerant control (FTC) structure for
this fault can be developed.
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