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Loopshaping of motor torque controller

GRZEGORZ SIEKLUCKI

The controller synthesis problem of the motor torque is presented. The tuning of the II2

controller parameters of the electromagnetic motor torque is introduced. The results are ob-
tained by applying the weighted sensitivity method (nominal performance) which is the op-
timization in H∞ space. The waterbed effect for some weighting functions is presented. The
results, which are obtained by a parametric optimization (nonlinear programming), are anal-
ysed by the calculations of the stability margins.

Key words: electric drive, II2 controller, robust control, stability region, parametric opti-
mization, nonlinear programming, waterbed effect, weighted sensitivity, modulus criterion

1. Introduction

Parametric optimization of a motor torque controller is discussed in the paper. The
obtained results are presented for a generalized mathematical model of the torque pro-
duction circuit in electric machines [20]. Thus, this transfer-function (the plant model)
is the second-order with derivative element and integral-plus-double integral (II2) con-
troller is selected for good steady-state performance, at low frequencies (offset-free ref-
erence tracking).

General parametric optimization of motor torque or current controllers are included
in several books e.g. [9, 11, 14]. Taking into account the motor torque constraints is
shown in [7, 15, 18, 22] and the weighted sensitivity for constrained transient of torque
is considered in the paper.

Loopshaping of the closed-loop system is called nominal performance or weighted
sensitivity, too. This controller synthesis problem is presented in many publications such
as [1, 8, 24] and [2] where the controller has fixed structure.

Robust controller synthesis for electrical drives can be found in [3, 11, 12, 13, 21].
The optimization method in the space H∞ as minimizing norm ||wPS||∞ is considered

and weight wP designing is introduced. Thus, the H∞ problem as a static optimization of
a constrained nonlinear multivariable function (constrained nonlinear programming) is
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realized in this paper. The stability region of a controller parameters is constraints of the
optimization problem.

The results which are obtained in optimization process are checked by the simulation
(frequency and step responses) and the stability margins (robustness) calculation. Fur-
thermore, a waterbed effect of a sensitivity function is discussed for parameters changing
of some weighting functions.

The parametric optimization is realized by the function fmincon from Optimization
Toolbox (MATLAB). This method is more flexible than functions from Robust Toolbox
(e.g. hinfstruct). The optimization algorithm is shown in appendix B.

H∞ control presented in this paper is alternative to another synthesis methods [9,
10, 19, 18, 17, 21]. The closed-loop shaping can be used both for double-inertia and
oscillatory plant model.

Robust analysis of the closed-loop torque control system is realized by classical
stability margins (gain margin (GM), phase margin (PM) and stability margin Sm =
||S||−1

∞ ).

2. Weighted sensitivity

H∞ norm for a SISO system is induced by L2 norm for signals. The physical in-
terpretation of H∞ norm corresponds to the maximum energy amplification over the
input signal. It can be shown that ||G(s)||∞ equals the supremum in the Bode plot of the
transfer-function.

Typically (nominal performance) in the loopshaping magnitude of S, which should
be small, is only considered. The sensitivity function is compared with upper bound

1
wP(s)

where wP is weight (fixed stable transfer-function). The loopshaping performance
requirement is satisfied by the condition

|S( jω)|< 1
|wP( jω)|

(1)

Optimization in H∞ space is the minimization of ||wP(s)S(s)||∞ and this problem
usually has solution by MATLAB function hinfstruct. Hinfstruct is included in the Ro-
bust Control Toolbox and based on the paper [2]. These tools can tune arbitrary control
architectures consisting of feedback loops and fixed-order, fixed-structure controllers.
But the assumption of this function is, there are no common roots of a numerator and a
denominator of the product wP(s)S(s). If this assumption is not satisfied so designer has
to take advantage of the classical optimization methods (e.g. Optimization Toolbox).

Usually the function wP is shaped (type of transfer-function and parameters) by the
designer and this weight is stable but not necessarily asymptotic stable. The robust con-
trol literature [1, 8, 24, 25] includes many formulas of wP and two of them are applied
in this paper:

wP(s) =
1
M

+
ωB

s
, 1¬M ¬ 2 (2)
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or

wP(s) =
s/M+ωB

s+ωBAm
, 0 < Am ≪ 1, 1¬M ¬ 2 (3)

where Am,M,ωB are infimum (at low frequency), supremum (at high frequency) and
bandwidth frequency of 1

wP(s)
, respectively. So discussed weighting function determines

the nominal performance. Moreover, the frequency responses of the upper bound of S
which based on previously presented weighting functions, and it can be considered as∣∣∣ 1

wP(ω)

∣∣∣= Mω√
ω2 +M2ω2

B

(4)

for weight (2) the magnitude at bandwidth frequency ωB equals∣∣∣ 1
wP(ωB)

∣∣∣= M√
1+M2

(5)

The frequency responses of the upper bound of S and the magnitude at bandwidth fre-
quency ωB for second weight (3) is in the following form

∣∣∣ 1
wP(ω)

∣∣∣= M

√
ω2 +A2

mω2
B

ω2 +M2ω2
B
,

∣∣∣ 1
wP(ωB)

∣∣∣= M

√
1+A2

m

1+M2 (6)

The values of the parameters Am,M,ωB have a significant influence on waterbed
effect, which results from the Bode sensitivity integral for stable open-loop transfer-
function L(s) [1, 8, 24, 25]

∞∫
0

ln |S( jω)|dω = 0 (7)

So formula (7) implies that areas of sensitivity reduction (ln |S( jω)| negative) and sensi-
tivity bandwidth (ln |S( jω)| positive) are equal.

Thus, decreasing the value of the parameter Am (3) at low frequency and over a larger
range (ωB increase) results in a larger peak of |S|. Then the inequality ||wP(s)S(s) ||∞ < 1
will not be possible to satisfy if the parameter M remains unchanged (parameter value
should increase). The illustrative examples are included in sec. 4 and 5.

Example 1 (Selection of weighting functions) Proper operation of many electric
drives in dynamic states is guaranteed for the following limitations of the state vari-
ables: 

|Me(t)|¬Mmax = λNMN – motor torque limitation,∣∣∣∣dMe(t)
dt

∣∣∣∣¬ pMN – limitation of torque derivative

 (8)
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where λN , p are positive constants.
The simplest (1st order) transfer-function which satisfies the constraints (8) is the

complementary sensitivity function T =
1

λN
p s+1

. Thus, from S+T = 1 and (1) the weight

wP is determined in the following form∣∣∣∣∣ s
s+ p

λN

∣∣∣∣∣< 1
|wP(s)|

(9)

Hence (9) is the critical weight and can be rewrite as (2) with M = 1,ωB = p
λN

wP(s) =
s+MωB

Ms
=

s+ p
λN

s
(10)

H∞ optimization for weight (10) can lead to the waterbed effect. Moreover, the weight
(11) is easier to shape

wP(s) =
s/M+ωB

s+ωBAm
(11)

with M > 1, 0 < Am < 1. Thus, function (11) is more popular.
The upper bound of S for weights (10) and (11) is shown in Fig. 1 where p= 50,λN =

2,ωB = 8 rad
s ,Am = 0.1,M = 1.6. These functions are used in further researches.
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Figure 1. Comparison of frequency responses of weighting functions (10) and (11) with magnitude at band-
width frequency

3. Electric drive

The generalizations of the mathematical models of various motors and the reference
frames were introduced in the papers [20, 23]. Motor torque model is without approxi-
mation (usually to first order lag element) and without decoupling:

G(s)
∣∣∣
Mm=0

=
Me(s)
U(s)

=
A1s

BT s2 +Bs+1
(12)
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where Mm is load torque, Me is motor torque, U is voltage in torque production axis,
B,T are time constants and A1 is parameter.

In spite of the construction differences of electric motors (separately excited
DC, BLDC, PMSM or induction motors) , the mathematical model of the voltage-
electromagnetic torque relationship is the second order transfer-function with electro-
magnetic T and electromechanical B time constants. On the basis of relationship between
these constants, one can specify if the motor is:

1. B 4T second-order lag with derivative element,

2. B < 4T oscillatory with derivative element.

The first case is simple and the modulus criterion [7, 9, 10] can be applied to the torque
controller parametric optimization. The second case is more difficult because no simpli-
fication of transfer-function can be used. State-space methods of PI controller tuning are
presented in [18, 19].

The mathematical models of the power converters can be considered in the form of
the transfer-function [4, 5, 6, 9, 11, 14, 21]

Gp(s) =
Kp

τ0s+1
(13)

But the fact that τ0 is much smaller than the time constants (B,T ) of electric motor
can lead to simplification of the model (13) to the following form [7, 16, 18, 22]

Gp(s) = Kp (14)

Such models of the power converter are used in the parametric optimization of the
motor torque controllers [7, 9, 11, 17].

4. II2 controller of electromagnetic torque – general case

The relation between constants B and T cannot be checked, thus it does not matter
whether the electric motor is oscillatory or lag element. The transfer-function (12) is
with derivative, obviously.

From the fact that the operator s occurs in numerator of the motor transfer-function
(12) the II2 controller is selected in the following form

GR(s) =
K1s+K2

s2 (15)

If Y,Kp,A1 are gain of measurement system, average gain of power converter and
nominator parameter of motor torque transfer-function (12) then one A = KpA1Y param-
eter can be used.

In this section two models (13), (14) of the power converter are used separately:
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1o G(s) = Kp the transfer-functions are in the forms

L(s) =
A(K1s+K2)

BT s3 +Bs2 + s
(16)

S(s) =
s(BT s2 +Bs+1)

BT s3 +Bs2 +(1+AK1)s+AK2
(17)

and from Liénard-Chipart criterion [1] the stability region in controller parameters
space is calculated as

K1 >− 1
A

(18a)

K2 > 0 (18b)

K2 <
1
T

K1 +
1

AT
(18c)

2o G(s) =
Kp

τ0s+1
the transfer-functions are in the forms

L(s) =
A(K1s+K2)

BT τ0s4 +B(T + τ0)s3 +(B+ τ0)s2 + s
(19)

S(s) =
s(BT τ0s3 +B(T + τ0)s2 +(B+ τ0)s+1)

BT τ0s4 +B(T + τ0)s3 +(B+ τ0)s2 +(1+AK1)s+AK2
(20)

and the stability region is in the following form of three inequalities

K1 >− 1
A

(21a)

K2 > 0 (21b)

K2 <−T τ0(1+AK1)
2

AB(T + τ0)2 +
(B+ τ0)(1+AK1)

AB(T + τ0)
(21c)

Example 2 Stability regions of parameters (K1,K2) space for the presented control sys-
tem with the power converter models are shown in the Fig. 2. The calculations based on
inequalities (18) and (21) for electric drive parameters (appendix A).

H∞ control problem, as the constrained nonlinear optimization (constrained nonlin-
ear programming) in RRR2, is formulated for:

objective function: ||wPS||∞ where wP is in the form (2) or (3) and S can be considered
as transfer-functions (17) or (20).

constraints: stability region of the controller parameters which is defined by relations
(18) or (21).
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Figure 2. Stability regions for various model of power converter

starting point: x0 = [K10 K20] which has to be chosen within the stability region (18)
or (21).

The MATLAB function with the interior-point algorithm can be used directly for
all previously presented transfer-functions but zero-pole cancellation should be realized
before writing objective function.

The interior-point constrained optimization gives the best result (convergence,
speed), comparing with remained options of function fmincon, for considered problem.
The hinfstruct function can be used only for the problems where zero-pole cancellation
does not exist. So fmincon is more reliable than hinfstruct, but the code program is larger.

Example 3 (Parametric optimization of II2 controller for DC drive with weighting
function (2)) The motor and the power converter parameters are included in appendix A
and the sensitivity function is described by (17). In DC motor Me = ψeI (ψe is flux
linkage, I is armature current) so the torque control is equal to the current control. Thus,
the mathematical model of the motor is in the following form [7, 9, 11, 17, 18, 20]

G(s) =
I(s)
U(s)

=
B
R s

BT s2 +Bs+1
, B = J

R
ψ2

e
, T =

L
R

(22)

where R,L are armature generalized resistance and armature total inductance, respec-
tively.

a: Firstly, the weight (2) in critical form (10) is considered. The standard MATLAB
function hinfstruct cannot be used in the H∞ optimization of

||wPS||∞ =

∣∣∣∣∣
∣∣∣∣∣ (s+ p

λN
)(BT s2 +Bs+1)

BT s3 +Bs2 +(1+AK1)s+AK2

∣∣∣∣∣
∣∣∣∣∣
∞

(23)
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because of simplification Laplace operator s from numerator of S and denomina-
tor of wP. This fact is the reason for the application of the interior-point method
(function fmincon in MATLAB). Presented result with 10−6 absolute tolerance on
the function value will be obtained. Algorithm fmincon is a static optimization of
constrained nonlinear multivariable function, so the inequalities (18) are used as
constraints and ||wPS||∞ is the performance index.

The optimization results are presented in Fig. 3, where frequency responses (em-
phasis magnitude at high frequency), Bode diagram (emphasis magnitude at low
frequency) and step responses of closed-loop system are shown. The step responses
may be interpreted as p.u. transient.
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Figure 3. Optimization results (II2 controller) for weight (2) – ωB = p
λN

rad/s,M = 1 and power converter
model (14)

MATLAB script which solves the II2 controller tuning problem (loopshaping) is
presented in appendix B.

This result with ||wPS||∞ = 2.46 (controller parameters K1 = 18,K2 = 15,8) is
obtained, thus frequency responses of 1

wP(s)
and S(s) are not fitted and, moreover,

magnitude of |S( jω)| has large peak and additionally, stability margin is small
Sm = 0.51. The step response overshoot of the closed-loop transfer-function T (s)
is about 25%, so it is not proper optimization result. Moreover, the robustness
factors are GM =+∞, PM = 34,9o (ωc = 27rad/s).

Concluding the frequency ωB is too high and the magnitude M is too small. This
means the waterbed effect.
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b: In order to improve previous optimization result the parameters M = 1.6 and ωB =
0.32 p

λN
are assumed. In Fig. 4 the optimization results (||wPS||∞ = 1.045) are

shown. The controller parameters K1 = 4.9,K2 = 11.6 are obtained The transfer-
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Figure 4. Optimization results (II2 controller) for weight (2) – ωB = 0.32 p
λN

rad/s,M = 1.6

function S(s) is good shaped and overshoot is very small (step response of T (s)).
The robustness factors are GM =+∞, PM = 60.7o (ωc = 11.9rad/s), Sm = 0.72.

Example 4 (Parametric optimization of II2 controller for DC drive with weight (3))
The performance index is in the following form

||wPS||∞ =

∣∣∣∣∣
∣∣∣∣∣ s(s/M+ωB)(BT s2 +Bs+1)
(s+ωBAm)(BT s3 +Bs2 +(1+AK1)s+AK2)

∣∣∣∣∣
∣∣∣∣∣
∞

(24)

with parameters M = 1.6, Am = 0.01 and ωB = 0.32 p
λN

.
After optimization process the controller parameters are K1 = 5.2,K2 = 11.3 and

the performance index is ||wPS||∞ = 1.061. Thus the frequency response of S is similar
to the result from Fig. 4 and the robustness factors are GM = +∞, PM = 59.9o (ωc =
12.4rad/s), Sm = 0.71.

Example 5 (Parametric optimization of II2 controller with first-order lag model of
power converter) The sensitivity function is in the form (20) (where τ0 = 1.37ms) and
weight is the same as in the example 4.
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Thus, the controller parameters are K1 = 4.8,K2 = 11.1 and the performance index
is ||wPS||∞ = 1.061. Hence, the frequency response of S is similar to result from Fig. 4
and the robustness factors are GM = 44.4, PM = 60.3o (ωc = 11.8rad/s), Sm = 0.7.

5. II2 controller of electromagnetic torque – simplified case

If transfer function (12) satisfies the condition B 4T then mathematical model can
be rewritten as

G(s) =
Me(s)
U(s)

=
As

(B1s+1)(T1s+1)
, B1  T1 (25)

and for simple calculations the controller is considered in the following form

GR(s) = K2
K

′
1s+1
s2 , K1 = K

′
1K2 (26)

After plant pole − 1
B1

compensation by controller zero − 1
K′

1
the first controller parameter

is
K

′
1 = B1 (27)

and the transfer-functions are obtained as

L(s) =
K2A

s(T1s+1)
, S(s) =

T1s2 + s
T1s2 + s+K2A

(28)

The performance index with weight (3) is in the form

||wPS||∞ =

∣∣∣∣∣
∣∣∣∣∣(s+MωB)(T1s+1)

M(T1s2 + s+AK2)

∣∣∣∣∣
∣∣∣∣∣
∞

(29)

The stability region of the transfer function S is K2 > 0. In similarity to general case
(sec. 4) the constrained nonlinear optimization is formulated for: objective function (29),
constraints K2 > 0 and starting point K20 > 0.

Example 6 (Parametric optimization of II2 controller with performance index (29))
The similar results as in Fig. 3 are obtained for M = 1,ωB = p

λN
. So, it means the

waterbed effect and parameters of weighting function have to be changed e.g.
as in example 3. Then the result is better and ||wPS||∞ = 1.24 for controller
parameters K1 = 3.45,K2 = 19.4. Moreover, robustness factors are GM = +∞,
PM = 51.9o (ωc = 9.8rad/s), Sm = 0.68. In the Fig. 5 the optimization results are
shown.

If the frequency ωB will be small then the condition
∣∣∣∣ wP(s)S(s)

∣∣∣∣
∞ < 1 can be

satisfied (Fig. 6).
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Figure 5. Optimization results (II2 controller) for K
′

1 = B1 and norm (29) – ωB = 0.32 p
λN

rad/s,M = 1.6
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6. Comparison with modulus criterion

The DC drive system is considered in this section and the mathematical model of the
motor is in the following form (for constant flux linkage ψe) [4, 7, 9, 14, 20]:
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J

dω(t)
dt

= Me(t)−Mm(t), Me(t) = ψeI(t)

U(t) = RI(t)+ψeω(t)︸ ︷︷ ︸
E(t)

+L
dI(t)

dt
(30)

and the thyristor power converter is assumed as (13) with τ0 = 1.67ms.
The modulus criterion [9, 17], is the classical approach in electrical drives, with PI

controller
GR(s) = KR

TRs+1
TRs

, KR =
T R

2KpY τ0
, TR = T

The modulus criterion based on simplification of the mathematical model (e.m.f. is
neglected, so E(t) = 0). Moreover pole (plant) by zero (controller) compensation and
optimal tracking postulate

∣∣∣ GRG
1+GRG

∣∣∣→ 1 are applied.
Thus, the closed-loop transfer-function is theoretically (E(t) = 0) in the following

form

Gc(s) =
I(s)

Ire f (s)
=

1
2τ2

0s2 +2τ0s+1
(31)

but without the motor model simplification (E(t) ̸= 0) the transfer-function is

Gc(s) =
I(s)

Ire f (s)
=

KRAs+ KR
T A

BT τ0s3 +B(T + τ0)s2 +(B+ τ0 +KRA)s+1+ KR
T A

(32)

The the closed-loop frequency response loopshaping is limited, but the advantages
are the basic structure and ready to use formulas for calculations. The modulus criterion
gives very fast step response, so limitation of the motor torque derivative can be realized
by setpoint value prefilter which, additionally, should compensate steady-state error [18].

Moreover, the PI controller is not robust on the load torque input, but this disadvan-
tageous effect can be compensated [22].

7. Conclusions

In this approach the sensitivity upper bound has been considered. The results of
research in frequency- and time-domain are satisfied.

The waterbed effect of the sensitivity function for various weights are shown in
Fig. 7. To sum up: if ωB will be smaller than p

λN
, then the area below and above 0 is

less than in the critical case. Moreover, the step response overshoot of T (s) is the small-
est for Fig. 7.d. but the speed of time response is characterized by low dynamics.

Presented method can be used for typical stator or rotor flux linkage reference frame
in induction or permanent magnet synchronous motors, because the mathematical mod-
els of torque production are very similar [20]. Hence, H∞ optimization is useful for motor
torque or quadrature current controller synthesis.
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The main disadvantages of the loopshaping is the necessity to use nonlinear pro-
gramming (numerical methods), but the program which is presented in appendix B is
not very complicated.

This method can be enlarged on electric drive uncertainty which leads to the robust
performance and the loopshaping performance can be satisfied for all possible plants.
Thus, the optimization in H∞ space [1, 8, 24] leads to the condition∣∣∣∣ |wP(s)S(s)|+ |wI(s)T (s)|

∣∣∣∣
∞ < 1 (33)

This problem for multiplicative uncertainty of a power converter was analysed in [21].

A. DC drive parameters

PN = 18[kW ], UN = 440[V ], IN = 47[A],

nN = 1800[rpm],ωN = 188[ rad
s ],ω0 = 200,3[ rad

s ],

R = 1,8[Ω] L = 99[mH], T = L/R = 55[ms],

ψeN = 2,197[ V s
rad ], λN = 2[ Imax

IN
], J = 0,69[kgm2],

Kp = 69[VV ], p = 50[A
A ].
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B. Matlab optimization algorithm

% wS=(s+MwB)/(Ms)
function [K1,K2,S,fv]=me_ii2_ws_fmin_ogr()
global alpha B T A wS M wB

Mn=In*Psi; B=J*R/(Psi^2); A=Kp*B/R*Y

s=tf(’s’);

alpha=p/lambda;
M=1.6; wB=0.32*alpha; wS = (s+M*wB)/(M*s)
K1=0.3;K2=0.6; % initial values

WS=((s+M*wB)/M*(B*T*s^2+B*s+1))/(B*T*s^3+B*s^2+(1+K1*A)*s+K2*A);
x0=[K1 K2];
op=optimset(’Display’,’iter’,’Algorithm’,’interior-point’,’LineSearchType’,...

’quadcubic’,’MaxIter’,40,’TolFun’,1e-6, ’TolX’,1e-6);
[x,fv,exitflag,output]=fmincon(@Hnorm,x0,[],[],[],[],[],[],@confun,op)
K1=x(1); K2=x(2); %controller parameters
K=x

C=(K1*s+K2)/s; S=feedback(1,C*G)
[GM,PM,Wcg,Wcp] =margin(C*G)% robustness analysis
SM=1/norm(feedback(1,C*G),Inf) % stability margin

%% performance index
function f=Hnorm(x)
global alpha B T A wS M wB
s=tf(’s’);
K1=x(1); K2=x(2);

C=(K1*s+K2)/s; G=tf([A],[B*T B 1]); S=feedback(1,C*G);
WS=((s+M*wB)/M*(B*T*s^2+B*s+1))/(B*T*s^3+B*s^2+(1+K1*A)*s+K2*A);

figure(3)
bode(S,1/wS,WS);
grid; drawnow;
f=norm(WS,Inf);

%% Constraints
function [c, ceq] = confun(x)
global alpha B T A
% Nonlinear inequality constraints
K1=x(1); K2=x(2);
c = [K2-K1/T-1/(T*A); -K2;-K1-1/A];
% Nonlinear equality constraints
ceq = [];
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