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MODELLING OF SYSTEMS OF COLLECTING ELECTRODES OF
ELECTROSTATIC PRECIPITATORS BY MEANS OF THE RIGID

FINITE ELEMENT METHOD

The paper presents a model of a rapping system of an electrostatic precipitator.
The rapping system consists of a set of collecting electrodes hanging on a suspen-
sion bar and braced together in a brushing bar. The suspension and brushing bars
are modeled using the rigid finite element method, while the collecting plates are
modeled using the hybrid method. The method combines the rigid finite element
method with the classical finite element method. As a result, the mass matrix is
diagonal. Some results of numerical simulations concerning free vibrations of the
collecting plates and the influence of the number of elements, into which the plate
is divided, on the vibrations of the rapping system are presented.

1. Introduction

An increasing world-wide interest in ecological issues, such as global
warming, air quality and acid rain, results in an obligation to reduce pollution
from industrial processes. One of the most common industrial appliances
used to control air pollution in power plants are electrostatic precipitators
(Fig. 1). They have been in use over decades and have proved to be an
effective way of collecting and removing particles from exhaust gases – the
effectiveness is grater than 99%.

The principle of electrostatic precipitation is to separate the suspended
particles from the exhaust gas by means of electric forces. First the particles
are electrically charged, and then collected on the electrodes, where they are
removed using a rapping system to be finally thrown into the external bin.

From the schematic description of the process it can be seen that the
effectiveness of the electrostatic precipitation depends on many factors and
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Fig. 1. Electrostatic precipitator and the system of collecting electrodes

the analysis of its performance requires interdisciplinary knowledge. Much
research is devoted to electric aspects of the whole process [1-3] as well as
particle migration and separation [4,5].

Periodic vibrations caused by the rapping system are responsible for
proper cleaning of the dust from the collecting electrodes. Geometrical fea-
tures of the electrodes, such as shape, length and thickness as well as the
force impact caused by the beater, have an influence on tangent and normal
accelerations of vibrations propagated over the collecting plates. This process
in turn has an essential influence on the quality of particle collection on the
plates. Modelling and analysis of those vibrations is the subject of this paper.

Analysis of the collecting electrodes with regard to their shape and di-
mensions requires not only advanced methods of modelling, but also sophis-
ticated numerical methods for solving the equations of motion. The most
popular method used for modeling complicated shapes is the finite element
method [6] implemented in commercial software packages. The models for-
mulated have a large number of degrees of freedom. Despite the existing
commercial software, there are still problems for the solution of which it
is profitable to create less sophisticated yet more specific programmes and
algorithms of ones own. This is the case when modelling the collecting
electrodes of electrostatic precipitators. The paper will present the hybrid
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method of modelling the collecting electrodes and its application to dynamic
analysis of the rapping system.

2. Model of the system

The rapping system consists of a set of collecting electrodes hanging
on a suspension bar. At the bottom, the electrodes are braced together in a
brushing bar, at the end of which there is an anvil (Fig. 2).

Fig. 2. The rapping system

The vibrations in the system are excited by means of a beater which
periodically hits the anvil. The system is divided into subsystems which are:
the top and bottom beams, and the collecting plates. Usually, there are nine
collecting plates in one section of the rapping system, however, the number
of active plates considered can vary between one and nine. The beams are
discretised by means of the rigid finite element method [7], while the plates
are modeled using the hybrid finite element method.

2.1. Models of the beams

The rigid finite element method is especially suitable for modelling
beam-like links. The detailed description of the method is presented in [7,8].
There is one connection of the suspension bar with each plate and two
connections of the plate with the brushing bar.

The number of elements into which the beams are discretised may be
different for both beams. If p is the number of plates and a is the length
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Fig. 3. Connections between the beams and the j-th plate

of a section of the beam respective to a single plate (all plates in a rapping
system are usually the same) (Fig. 3), then in the primary division the length
of rigid elements is as follows:



ds
0 = as

L +
ās

2
ds

i = ās

ds
ps

=
ās

2
+ as

R

for i = 1, ..., ps − 1 (1)

where: ās =
a
ns
, s ∈ {u, b}, u, b means upper or bottom beam respectively,

ps = nsp.
Following the idea of the rigid finite element method, the secondary di-

vision consists in placing spring-damping elements (sde) in the mass centres
of the elements from the primary division and thus obtaining the rigid finite
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elements (rfe), with the length equal to:


ls0 =
ds

0

2
lsi =

ds
i−1 + ds

i

2

lsps
=

ds
ps

2

for i = 1, ..., ps − 1 (2)

For this analysis, it is assumed that both beams have the same shape of
cross-section apart from the part of the bottom beam where the anvil is.
This permissible simplification can be easily omitted. The supplementary
box cross-section of beams is chosen as a result of analysis carried out by
means of the finite element method. Geometrical parameters (Fig. 4) of the
supplementary cross-section exactly reflect mass and stiffness parameters of
the real beams. The coefficients of spring-damping elements can be calculated
in the way described in [8].

Fig. 4. Cross-section of the supplementary beam and parameters of rfes

The axes of the local coordinate system assigned to each rfe before
deformation are parallel to the axes of the global reference system, and are
the main central inertial axes of the element. Thus, the mass matrix of the
element is diagonal and takes the following form:

Ms
i = diag

{
ms

i ms
i ms

i I s
i,x I s

i,y I s
i,z

}
(3)

where: ms
i = ρlsi A

s is the mass of i−th rfe, As is the cross-section area,

I s
i,x = ms

i



(
lsi
)2

12
+

I s
x

As

 , I s
i,y =

ms
i

As

[
I s
x + I s

z

]
, I s

i,z = ms
i



(
lsi
)2

12
+

I s
z

As

 ,

I s
x, I

s
z are inertial moments of the cross-section of the beam.
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The vector of generalised coordinates of rfe i is as follows:

qs
i =

[
x̃s
i ỹs

i z̃s
i ϕ̃s

i θ̃s
i ψ̃s

i

]T
(4)

where: x̃s
i , ỹ

s
i , z̃

s
i are displacements of the mass centre Ss

i of rfe,

ϕ̃s
i , θ̃

s
i , ψ̃

s
i are the angles of rotations.

The kinetic energy of the i-th rfe is calculated according to the formula:

Es
i =

1
2

[
q̇s

i

]T
Ms

i q̇
s
i (5)

Since the elements of Ms
i are constant the Lagrange operator takes the form:

εqs
i

= Ms
i q̈

s
i (6)

where εqs
i

=
d
dt
∂Es

i

∂q̇s
i
− ∂E

s
i

∂qs
i
.

The derivative of the potential energy of gravity forces is calculated as:

∂V s
g,i

∂qs
i

=
[
−ms

i g 0 0 0 0 0
]T

= Gs
i (7)

The energy of spring deformation can be presented in the form:

Vs
e,i =

1
2

(
∆s

i

)T
Cs

i ∆
s
i (8)

where: Cs
i = diag

{
cs
i,1 · · · cs

i,6

}
,

cs
i, j are the stiffness coefficients,

∆s
i is the deformation of sde i.

Having used notations from Fig. 4.b), after necessary transformations the
derivatives of spring energy with respect to the generalised coordinates can
be presented in the form:

∂Vs
e,i

∂qs
i

= −
(
Hs

i,1

)T
Cs

i

[
Hs

i,2q
s
i+1 −Hs

i,1q
s
i

]
= Cs

i,LLq
s
i + Cs

i,LRqs
i+1 (9.1)

∂Vs
e,i

∂qs
i+1

=
(
Hs

i,2

)T
Cs

i

[
Hs

i,2q
s
i+1 −Hs

i,1q
s
i

]
= Cs

i,RLq
s
i + Cs

i,RRqs
i+1 (9.2)

where: Cs
i,LL =

(
Hs

i,1

)T
Cs

iH
s
i,1, Cs

i,LR = −
(
Hs

i,1

)T
Cs

iH
s
i,2,
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Cs
i,RL = −

(
Hs

i,2

)T
Cs

iH
s
i,1, Cs

i,RR =
(
Hs

i,2

)T
Cs

iH
s
i,2,

Hs
i,1 =


I Ss

i,R

0 I

 , Hs
i,2 =


I Ss

i+1,L

0 I

 ,

Ss
i,R =



0 0 −lsi,R
0 0 0
lsi,R 0 0

 , Ss
i+1,L =



0 0 lsi+1,L

0 0 0
−lsi+1,L 0 0

 .

Kinetic and potential energies of the beams are the sum of energies of all
rfes:

Es =

ps+1∑

i=0

Es
i (10.1)

V s
g =

ps+1∑

i=0

V s
g,i (10.2)

and the potential energy of spring deformation is the sum of energies of sdes
0 ÷ps:

V s
e =

ps∑

i=0

V s
e,i (11)

The vector of generalised coordinates of a beam can be presented as:

qs =



qs
0
...

qs
i
...

qs
ps+1



(12)

So finally, the following can be written:

d
dt
∂Es

∂q̇s −
∂Es

∂qs +
∂
(
V s

g + V s
e

)

∂qs = Msq̈s + Ksqs + Gs (13)

where:

Ms =



Ms
0 · · · 0 · · · 0
...

...
...

0 · · · Ms
i · · · 0

...
...

...

0 · · · 0 · · · Ms
ps+1



,
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Ks =



Ks
0,0 Ks

0,1 0 · · · 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 Ks
i,i−1 Ks

i,i Ks
i,i+1 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 0 0 0 · · · 0 Ks
ps+1,ps

Ks
ps+1,ps+1



,

Gs =



Gs
0
...

Gs
i
...

Gs
ps+1



,

Ks
0,0 = Cs

0,LL,K
s
0,1 = Cs

0,LR

Ks
i,i−1 = Cs

i−1,RL,K
s
i,i = Cs

i−1,RR + Cs
i,LL,K

s
i,i+1 = Cs

i,LR

Ks
ps+1,ps

= Cs
ps,RL,K

s
ps+1,ps+1 = Cs

ps,RR

.

Thus, the motion of beams is described by the following number of gener-
alised coordinates:

ns
do f = 6 (ps + 2) (14)

The upper beam is connected with the base, and this connection has to be
taken into account when deriving the equations of motion. The connection
is modelled by means of spring elements as in Fig. 5.

Fig. 5. Connection of the suspension beam with the base

The energy of spring deformation of those elements can be calculated
as:

VL =
1
2

∆T
LCL∆L (15.1)

VR =
1
2

∆T
RCR∆R (15.2)

where: CL = diag
{
cL
i

}
, CR = diag

{
cR
i

}
, i =1, . . . 6

∆L,∆R vectors of deformations at L and R.

It is assumed that cL
6 = cR

2 = cR
6 = 0. Values ∆L,∆R can be calculated as:

∆L = HLq
u
0 (16.1)

∆R = HRqu
p+1 (16.2)
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where:

HL =


I SL

0 I

 , HR =


I SR

0 I

 ,

SL =



0 0
lu0
2

0 0 0

− lu0
2

0 0


, SR =



0 0 −
lupt+1

2
0 0 0

lupt+1

2
0 0


.

Thus, the following is achieved:

∂VL

∂qu
0

= KLq
u
0 (17.1)

∂VR

∂qu
pt+1

= KRqu
pt+1 (17.2)

Matrices KL and KR have to be added to sub-matrices Ku
0,0 and Ku

pu+1,pu+1
in matrix Ku.

As has been mentioned, the vibrations in the rapping system are excited
when the beater hits the anvil. It is assumed that the impulse of a force (Fig. 6)
is modelled as a central, straight stroke of force F =

[
0 −S(t) 0

]T
.

Fig. 6. Force acting on the anvil

The coordinates of the point where the force acts, can be calculated
according to the formula:

rS = rb
C,pb+1 + Ub

pb+1 (r̃S) qb
pb+1 (18)

where: r̃S =
[

x′S y′S z′S
]T

=
[

0 −y′S 0
]T

,

Ub
pb+1 =



1 0 0 0 z′S −y′S
0 1 0 −x′S 0 z′S
0 0 1 y′S −z′S 0

 .
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The generalised forces can be calculated as:

[
Q(S)

pb+1

]T
= FT ∂rS

∂qb
pb+1

= FTUb
pb+1 (19)

which leads to the following:

[
Q(S)

pb+1

]T
=

[
0 −S 0

]


1 0 0 0 0 −y′S
0 1 0 0 0 0
0 0 1 y′S 0 0

 =
[

0 −S 0 0 0 0
]

(20)

2.2. Model of the plates

The collecting electrodes of sigma shape are considered (Fig. 7). The
length of the electrodes can vary between 10 and 15 meters. The natural
method of discretisation of a single plate results from its shape. The rigid
finite element method is not suitable for modelling shell structures; thus a
hybrid finite element method [9] is proposed.

Fig. 7. Sigma electrode

This method combines the rigid finite element method with the classical
finite element method. First, the finite element method is used for calculations
of spring deformations and thus the stiffness matrix is formulated. Then the
rigid finite element method is used for modelling mass properties of the
system.

The local coordinate system is assigned to the plate as in Fig. 7. Discreti-
sation of the plate into n = nxny elements is carried out in two steps. First,



MODELLING OF SYSTEMS OF COLLECTING ELECTRODES OF ELECTROSTATIC . . . 37

using its natural shape, the plate is discretised into rectangular elements,
called primary elements: there are nx elements along the length of the plate,
while the number of elements in direction of axis y ny = m results from the
number of strips.

Fig. 8. Primary element (i, j)

The nodal displacements of the element (Fig. 8) are described by the
vector:

q̄s
i, j =

[
ūs

i, j, v̄
s
i, j, w̄

s
i, j, ϕ̄

s
i, j, θ̄

s
i, j, ψ̄

s
i, j

]T
fors = 1, 2, 3, 4 (21)

where: ūs
i, j, v̄

s
i, j, w̄

s
i, j are displacements of node s along x̄, ȳ, z̄ axes respectively,

ϕ̄s
i, j, θ̄

s
i, j, ψ̄

s
i, j are respective rotations.

It is assumed that:
– shield deformations are described by means of displacements ūs

i, j, v̄
s
i, j

and angle ψ̄s
i, j

– plate deformations are described by displacement w̄s
i, j and angles ϕ̄s

i, j, θ̄
s
i, j.

The shape functions and respective angles are defined as follows:

ū = au
1 + au

2 x̄ + au
3ȳ + au

4 x̄ȳ + au
5ȳ

2 + au
6 x̄ȳ

2 (22.1)

v̄ = av
1 + av

2 x̄ + av
3ȳ + av

4 x̄ȳ + av
5 x̄

2 + av
6 x̄

2ȳ (22.2)

w̄ = aw
1 + aw

2 x̄ + aw
3 ȳ + aw

4 x̄2 + aw
5 x̄ȳ + aw

6 ȳ2 + aw
7 x̄3+

+aw
8 x̄2ȳ + aw

9 x̄ȳ2 + aw
10ȳ

3 + aw
11 x̄

3ȳ + aw
12 x̄ȳ

3 (22.3)

ϕ̄ =
∂w̄
∂ȳ

(22.4)

θ̄ = −∂w̄
∂x̄

(22.5)
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ψ̄ =
1
2

(
∂v̄
∂x̄
− ∂ū
∂ȳ

)
(22.6)

The energy of spring deformations, after necessary calculations can be pre-
sented in the form:

Es
i, j = 1

2

[
q̄1

i, j
T q̄2

i, j
T q̄3

i, j
T q̄4

i, j
T
]


Ci, j
11 Ci, j

12 Ci, j
13 Ci, j

14

Ci, j
21 Ci, j

22 Ci, j
23 Ci, j

24

Ci, j
31 Ci, j

32 Ci, j
33 Ci, j

34

Ci, j
41 Ci, j

42 Ci, j
43 Ci, j

44





q̄1
i, j

q̄2
i, j

q̄3
i, j

q̄4
i, j


= 1

2 q̄
T
i, jC

i, jq̄i, j

(23)
where: q̄s

i, j, s = 1...4 defined in (21),
Ci, j

rs , r, s = 1...4 are 6×6 stiffness matrices, whose components are ordered
according to the nodal coordinates in vector q̄s

i, j.
It should be noted that for defined physical parameters of plates E, υ, α,

h, the stiffness matrices of the elements depend only on dimensions ∆x and
∆y =b j so they are calculated only for j =1, ... , ny.

Generalised coordinates defined in (21) need to be expressed in the co-
ordinate system with axes parallel to the global coordinate system and thus
the following transformation takes place:

qi, j =


R̄α j 0
0 R̄α j

 q̄i, j (24)

where:

R̄α j =



1 0 0
0 cosα j − sin α j

0 sin α j cosα j

 .

Having calculated energy of spring deformation, we perform a secondary
division of the plate. This is an idea taken from the rigid finite element
method in which rigid finite elements reflect inertial features, while connect-
ing spring-damping elements reflect elastic features of the system. Since in
the hybrid finite element the elastic deformations are described as above,
only the mass matrix has to be calculated. To this end each element from
the primary division is divided into four equal sub-elements (Fig. 9).

Then the rigid finite elements (rfe) are formed combining neighboring
parts of primary elements in such a way that two parts of the same primary
element do not belong to the same rfe. Finally, the plate can be treated as
a system of n = (nx + 1) m = (nx + 1)

(
ny + 1

)
rfes consisting of one, two or

four sub-elements of different primary elements.



MODELLING OF SYSTEMS OF COLLECTING ELECTRODES OF ELECTROSTATIC . . . 39

Fig. 9. Primary division of a plate and division of primary element (i, j) into four sub elements

(i, j)1, (i, j)2, (i, j)3, (i, j)4

The vector of generalised coordinates of each rfe k includes three dis-
placements and three rotations and is given in the following form:

q̃r f e
k =

[
∆x̃k ,∆ỹk ,∆z̃k , ϕ̃

x
k , ϕ̃

y
k , ϕ̃

z
k

]T
(25)

When vibrations of collecting plates are considered, it can be assumed that
angles ϕx

k , ϕ
y
k , ϕ

z
k are small. Thus, when coordinates (x′, y′, z′) of a point

are known in the local system of rfe k, then its coordinates in the global
coordinate system can be calculated as follows:

r = rr f e
k + R̄βK

[
Uq̃r f e

k + r′
]

(26)

where: r′ =
[
x′, y′, z′

]T ,
U is defined in (18),
rr f e
k is the vector of coordinates of the mass center of rfe k,

R̄βk is defined in (24),
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βk is the angle resulting from the fact, that axes of the local coordinate
system of rfe are main central inertial axes of the element.

Using the standard RFE approach the diagonal mass matrix of rfe k can
be formulated:

Mk = diag
{
mk ,mk ,mk , I x

k , I
y
k , I

z
k

}
(27)

And since the generalised coordinates of rfes are independent, the mass
matrix of a system of n rfes takes the form:

M = diag {M1,M2, ...,Mn} (28)

This is a diagonal matrix with constant coefficients. Displacements of rfes
are described by means of displacements of primary elements.

In order to formulate the stiffness matrix for the whole electrode, the dis-
placements of primary elements need to be expressed in terms of generalised
coordinates of the rigid finite elements.

To this end, the coordinates of nodes of primary element (i, j) are first
expressed in the global coordinate system and then, after some transforma-
tions the vector of generalised coordinates of the nodes can be presented in
the following form:

qi, j =


R̄T
α j

R̄βkU(r′si, j)
RT
α j

R̄βkS

 qr f e
k (29)

where: r′si, j are coordinates of a node of primary element (i, j) in local system
of rfe k,

U is defined in (18) for x, y, z coordinates of vector r′si, j,

S =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Such a procedure have to be carried out for each collecting plate. In order to
formulate the equations of motion of the system, mass and stiffness matrices
will have a superscript denoting the number of the plate. Stiffness matrix K
of the plate is composed of matrices defined in (24).

2.3. Equations of motion

The equations of motion for the system can be written in the form:

Muq̈u + Kuqu = −Gu (30.1)
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M jq̈ j + K jq j = −G j, j = 1, ..., np (30.2)

Mbq̈b + Kbqb = −Gb + fb(S) (30.3)

where np is the number of active plates,
Mu,Ku,Mb,Kb are mass and stiffness matrices for the top and bottom beams
respectively as defined in subsection (2.1),
M j,K j are mass and stiffness matrices for each plate defined in section 2.2 ,

Gu,G j,Gb are vectors resulting from the gravity forces for the upper beam,

the plates and the bottom beam respectively,

fb =



0
...

0
...

Q(S)T
pb+1



, Q(S)T
pb+1 is defined in (20).

The equations of motion need to be completed with components de-
scribing the connections between the subsystems. As was mentioned, there
is one connection between the upper beam and the plate, and two connections
between the plate and the bottom beam. These connections are modelled by
means of elastic elements sdeE between two rigid bodies. Such an approach
enables us to replace formulation of constraint equations by calculation of
the energy of spring deformation, which can be written in the form:

VE = 1
2 ∆̃

T
ECE∆̃E (31)

where: CE = diag
{
cx
E , c

y
E , c

z
E , c

ϕ
E , c

θ
E , c

ψ
E

}
,

cx
E , c

y
E , c

z
E , c

ϕ
E , c

θ
E , c

ψ
E are stiffness coefficients of the elastic connection,

∆̃E is the vector of relative displacement between the elements connected
by sdeE expressed in the local coordinate system {E}.

Since the energy of spring deformation of the connection depends on
the generalised coordinates of the two bodies connected by this element, the
derivatives of the energy with respect to those coordinates need be calculated
as:

∂VE

∂q̃(l) = C(E)
ll q̃(l) + C(E)

lr q̃(r) (32.1)
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∂VE

∂q̃(r) = C(E)
rl q̃(l) + C(E)

rr q̃(r) (32.2)

where: r, l are the indexes of right and left body in the connection,

C(E)
ll ,C

(E)
rl ,C

(E)
rr are stiffness matrices calculated after some necessary

transformations in which the coordinates are expressed in the global co-
ordinate system.

The elastic element is universal since it can represent rotary, translation
or a spherical bearing according to values of stiffness coefficients assumed.

For numerical calculations values of 1012N /m has been assumed to trans-
lational and 109Nm/rad rotational coefficients.

3. Numerical simulations

Free vibrations of a simple square plate calculated using the hybrid ele-
ment method and their comparison with an analytical solution, are presented
in [8]. In addition, a model of a single sigma collecting electrode 15m long
is derived, and free vibrations calculated using this model are compared with
those obtained from ABAQUS and ANSYS. Table 1 presents the comparison
the first ten frequencies of free vibrations, assuming that the electrode has
been divided into nx=60 segments and ny=19 strips.

Table 1.
The comparison of frequencies of free vibrations for a SIGMA plate

Free vibrations
Method/package used

ANSYS ABAQUS Hybrid method

Frequency of free vibrations [Hz]

1 0,54 0,59 0,60

2 1,17 1,05 1,17

3 2,09 2,04 2,15

4 3,20 2,88 3,19

5 5,15 4,85 5,19

6 6,08 5,50 6,06

7 9,58 8,73 9,54

8 9,70 9,05 9,73

9 13,44 12,48 13,36

10 13,61 13,41 13,51
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The frequencies of free vibrations obtained by means of the hybrid
method differ by about 10% from those obtained using ANSYS and by about
5.5% in comparison with those obtained from ABAQUS. Comparison of the
free vibrations of the sigma plate with a strip method, when spline functions
of the third order are used in order to model deflections along the length
of the plate, is presented in [10]. The strip method is also presented in
[11]. Since the systems of equations of motion derived using both methods
(the hybrid finite element method and the strip method) are very large, they
require the use of efficient numerical procedures, which is discussed in [12].
Static analysis of the collecting electrodes is the subject of [13]. The results
presented below are calculated for a system of three sigma electrodes 15 m
long. The vibrations are caused by a force impulse shown in Fig. 10.

Fig. 10. The system of three collecting plates and the force impulse assumed

An influence of the number of elements into which a single plate is
discretised is presented in Fig. 11 and 12.

The figures show the courses of components of accelerations calculated
at different points of the plate: in the middle of the central plate 2m from
the top beam and in half way along the plate close to the anvil. Convergence
of results is obtained for n larger than 300.
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Fig. 11. Accelerations in x,y,z directions in the middle of the central plate
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Fig. 12. Accelerations in x,y,z directions in the middle of the first plate
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4. Final remarks

Accelerations of vibrations propagated in collecting electrodes are one
of the essential factors influencing the effectiveness of cleaning the col-
lecting electrodes and thus the effectiveness of electrostatic precipitation.
A computer programme enabling dynamic analysis of the rapping system
has been developed based on the model presented in the paper. The model
uses the rigid finite element method for discretisation of the suspension of
the electrodes and the brushing bar, and the hybrid finite element method for
discretisation of the plates. In the hybrid method proposed, discretisation into
rigid finite elements is the major task because the generalized coordinates
describing the motion of the system are displacements and rotations of rfes
in local coordinate systems. Motion of an rfe is limited only by the influence
of primary elements, and thus when modelling connections of the SIGMA
plate with the base or other components of the electrostatic precipitator, the
formalism of the rigid finite element method can be easily applied. Due to
such an approach the equations of motion formulated contain a diagonal
constant mass matrix and band stiffness matrix which is useful for numerical
simulations. Indirect verifications of the method have been carried out. The
software package developed on the basis of the model presented is designed
for use by the producers of electrostatic precipitators. An intuitive interface
can help at the initial stage of design. An influence of different parameters
can be analysed without the necessity of formulating complex models using
commercial software.

The paper is part of the project N R03 0035 04 financed by the National
Centre for Research and Development

Manuscript received by Editorial Board, February 01, 2011;
final version, February 09, 2011.
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Modelowanie układów płyt zbiorczych elektrofiltrów z wykorzystaniem metody sztywnych
elementów skończonych

S t r e s z c z e n i e

W artykule przedstawiono model układu strzepującego elektrofiltru suchego. Układ strzepu-
jący składa się z zestawu elektrod zbiorczych zawieszonych na belce górnej i ujętych w drąg
strzepujący. Belki górna i dolna modelowane są przy pomocy metody sztywnych elementów skoń-
czonych podczas gdy do modelowania elektrod zbiorczych wykorzystywana jest hybrydowa metoda
elementów skończonych. Metoda ta łączy metodę sztywnych elementów skończonych z klasyczną
metodą elementów skończonych. W wyniku takiego podejścia otrzymuje się diagonalną macierz
mas. W artykule przedstawiono wyniki symulacji numerycznych dotyczące drgań własnych płyt
zbiorczych oraz wpływ liczby elementów, na które dzielono płyty, na drgania układu strzepującego.


