
T H E A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

VOL. LX 2013 Number 3

10.2478/meceng-2013-0027
Key words: finite element methods, vibration analysis, experimental verification

IWONA ADAMIEC-WÓJCIK ∗, ANDRZEJ NOWAK ∗∗, STANISŁAW WOJCIECH ∗∗∗

COMPARISON OF METHODS FOR MODELLING VIBRATIONS
OF COLLECTING ELECTRODES IN DRY ELECTROSTATIC

PRECIPITATORS

Dry electrostatic precipitators (ESPs) are widely used for purification of ex-
haust gases in industrial applications. Maintenance of their high efficiency depends
primarily on periodical cleaning of the collecting electrodes (CEs). Dust removal
(regeneration of CEs) is realized by inducing periodical vibrations of the electrodes.
The paper presents results of vibration modelling of a system of CEs; the results were
obtained by means of the finite element method, the hybrid finite element method,
the finite strip method and a model formulated using Abaqus. Numerical results
are compared with those obtained from experimental measurements. Conclusions
concerning numerical effectiveness and exactness of the methods are formulated and
reasons for differences are discussed.

1. Introduction

Contamination of the atmosphere by polydisperse dust emitted together
with waste gases from electrical and industrial plants has been a source of
serious health and ecological problems for many years [1-3]. Dry electrosta-
tic precipitators (ESP) are widely used for purification of exhaust gases in
industrial applications.

The inside of an ESP is a complex steel construction containing many
sections (Fig. 1a). One section is formed by up to one hundred systems of
collecting electrodes separated alternately by systems of discharge electrodes
(Fig. 1b). Effectiveness of an ESP depends on conditions of gas flow, electri-

∗ University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Email:
i.adamiec@ath.eu

∗∗ University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Email:
a.nowak@ath.eu

∗∗∗ University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Email: swoj-
ciech@ath.eu



432 IWONA ADAMIEC-WÓJCIK, ANDRZEJ NOWAK, STANISŁAW WOJCIECH

cal field, and geometrical parameters of the collecting electrodes. Evaluation
of the precipitator efficiency is realized either directly by measurements or in-
directly by the use of physical laboratory models or computer simulations
based on mathematical models.

Fig. 1. Dry electrostatic precipitator: a) scheme of an ESP, b) section of the precipitator

Recently a great deal of research has been devoted to measuring and
modelling the electrical field [4-7] and gas flow in ESPs [5], [8]. Mechanical
phenomena, especially vibrations induced during the process of cleaning the
electrodes, are rarely analysed [2], [9]. Regardless of the type of the device
used for shaking off the dust (gravitational, electro-vibrational, acoustic),
cleaning of the collecting electrodes is realized by inducing vibrations, the
propagation of which in the system of CEs causes coagulated dust parti-
cles to be detached and thereby removed from the precipitator. Geometrical
parameters of CEs and the impulse force generating the vibrations in the
system have a direct impact on normal and tangent accelerations of CEs,
and thus on the effectiveness of the regeneration process. On the one hand,
the range of the accelerations obtained influences the effectiveness of the
cleaning process, but on the other hand it determines the values of fatigue
load. A reasonable compromise requires modern calculation methods to be
used at the design stage.

The authors have, for several years, dealt with the modelling and mea-
surement of the vibrations of the electrodes caused by the beater hitting the
brushing bar. Paper [10] presents the results of research devoted to optimi-
sation of the shape of the beater. This paper is concerned with modelling
of one system of the collecting electrodes (Fig. 2a), which consists of the
suspension beam (upper beam) and the set of p hanging electrodes (usually
no more than 10) braced at the bottom by the brushing bar (bottom beam).

The beater hits an anvil placed at the end of the brushing bar. The vibra-
tions are induced by force F (t) , the exemplary course of which (measured at
the test stand) is presented in Fig. 2c). A collecting electrode (CE) consists
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of several long strips connected at certain angles. The test stand, where the
measurements were taken, was equipped with SIGMA VI electrodes (Fig.
2b) and such electrodes are considered in this paper.

Fig. 2. The system under consideration: a) the system of collecting electrodes, b) SIGMA VI
profile, c) measured impulse force

Different modelling methods are applied. The model obtained by means
of the finite element method is presented in [11] and [12]. The model based
on the hybrid finite element method (HFEM) combining the rigid finite el-
ement method with the finite element method (FEM) is presented in [13],
while paper [14] describes the model formulated using the finite strip method
(FSM). The hybrid finite element method and the finite strip method are
also presented in [15] together with the analysis of free vibrations. Forced
vibrations were not considered there.

This paper presents, for the first time, comparison of all the above meth-
ods with respect to their exactness and effectiveness in analysis of vibra-
tions forced by the hammer. The description of the methods is limited to a
minimum; only the basic features are shown, omitting transformations and
relations which can be found in the papers mentioned above. The results of
calculations carried out according to our own methods are compared with
those obtained using Abaqus and from experimental measurements.
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2. Models of the system

The mathematical model takes into account:
– the upper beam simply supported,
– p electrodes, which are shells connected with the upper beam; the elec-

trode can rotate about an axis parallel to z,
– the bottom beam rigidly connected with the electrodes and loaded with

the impulse force as in Fig. 2c.
Damping is omitted in the models. The models of beams are obtained

using the rigid finite element method [16], according to which the beams are
divided into nu and nd massless and non-dimensional elements respectively
as in Fig. 3.

Fig. 3. Discretisation of beam α (α ∈ {u, d}) into rigid (rfe) and spring-damping (sde) elements

Equations of motion of the beams can be written in the following form:

M(α)q̈(α) + C(α)q(α) = G(α) + Q(α) (1)

where: q(α) =
[

q(α)T
0 · · · q(α)T

i · · · q(α)T
nα

]T
,

q(α)
i =

[
xαi yαi zαi ϕαi θαi ψαi

]T
,

xαi , y
α
i , z

α
i − translational displacements of the centre of mass of the

rfe,
ϕαi , θ

α
i , ψ

α
i − rotational displacements of the rfe,

M(α) − diagonal matrices with constant coefficients,
C(α) − stiffness matrices with constant coefficients,
G(α) − vector of gravity forces,
Q(α) − vector of external generalised forces caused by the impulse

force presented in Fig. 2 acting on the bottom beam.
The electrodes treated as shells with large length (about 20 meters) are

modelled using three different methods:
– classical finite element method (FEM)
– hybrid finite element method, which combines the finite element method

with the rigid finite element method (HFEM)
– finite strip method (FSM).

The most important elements of the model are described in the next
subsections.
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2.1. FEM model

The system of coordinates {k} with axes as in Fig. 4 is assigned to elec-
trode k. A single strip of the electrode has constant width and thickness.
Each strip is divided into nk elements with constant length ∆xk along axis x̂.

Fig. 4. Strip j with width bk, j and angle of inclination βk, j towards axis ŷ, {} – global coordinate
system, {k} – local coordinate system connected with electrode k with axes parallel to those of

system {}

Rectangular element (k, j, i) presented in Fig. 4 (indices k, j, i are the
numbers of electrode, strip and element in strip j respectively) is described
by the following vectors:

q′k, j,i,s =
[
u′k, j,i,s, v

′
k, j,i,s,w

′
k, j,i,s, ϕ

′
k, j,i,s, θ

′
k, j,i,s, ψ

′
k, j,i,s

]T
for s = 1, 2, 3, 4 (2)

where: u′k, j,i,s, v′k, j,i,s, w′k, j,i,s – displacements of node (k, j, i, s) along axes
x′k, j,i, y′k, j,i, z′k, j,i,

ϕ′k, j,i,s, θ
′
k, j,i,s, ψ

′
k, j,i,s− rotations in joint (k, j, i, s) about the axis parallel

to x′k, j,i, y′k, j,i, z′k, j,i respectively.
It is assumed that the shield state is defined by displacements and rotation

angle. Displacement fields u′, v′ are described by the following functions:

u′(x′, y′, t) = au
1 + au

2x
′ + au

3y
′ + au

4x
′y′ + au

5(y
′)2 + au

6x
′(y′)2 (3.1)

v′(x′, y′, t) = av
1 + av

2x
′ + av

3y
′ + av

4x
′y′ + av

5(x
′)2 + av

6(x
′)2y′ (3.2)

while angles of rotation ψ′ are expressed by the relations [17]:

ψ′ =
1
2

(
−∂u

′

∂y′
+
∂v′

∂x′

)
. (3.3)
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The plate state is described by deflection and angles and defined as follows:

w′
(
x′, y′, t

)
= a(w)

1 + a(w)
2 x′ + a(w)

3 y′ + a(w)
4 (x′)2 + a(w)

5 x′y′ + a(w)
6 (y′)2+

+a(w)
7 (x′)3 + a(w)

8 (x′)2y′ + a(w)
9 x′(y′)2 + a(w)

10 (y′)3 + a(w)
11 (x′)3y′ + a(w)

12 x′(y′)3,
(4.1)

ϕ′ =
∂w′

∂y′
, (4.2)

θ′ = −∂w
′

∂x′
. (4.3)

Coefficients a(u)
1 − a(u)

6 , a(v)
1 − a(v)

6 and a(w)
1 − a(w)

12 can be calculated from
the respective boundary conditions dependent on joint displacements and
velocities [11], [15].

After necessary transformations presented in [11], the kinetic and poten-
tial energy are written as:

Tk, j,i = 1
2

4∑
l=1

4∑
s=1

q̇T
k, j,i,lMk, j,i,lq̇k, j,i,s (5)

Ek, j,i = 1
2

4∑
l=1

4∑
s=1

qT
k, j,i,lCk, j,i,lqk, j,i,s (6)

where: Mk, j,i,l, Ck, j,i,l – mass and stiffness matrices of elements expressed
with respect to the coordinate system,

qk, j,i,s = Rk, jq′k, j,i,s − vectors of nodal displacements expressed with
respect to the global coordinate system {k, j, i} ,

Rk, j =


R̄k, j 0
0 R̄k, j

 ,

R̄k, j =



1 0 0
0 cos βk, j − sin βk, j

0 sin βk, j cos βk, j

 .

Finally, after some transformations [11],[12], equations of motion of
electrode k can be written in the form:

M(k)
F q̈(k)

F + C(k)
F q(k)

F = G(k)
F (7)

where: M(k)
F , C(k)

F – mass and stiffness matrices of electrode k with constant
elements,
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G(k)
F = −∂V

(k)
g

∂q(k)
F

− vector of gravity forces,

q(k)
F =



q(k)
F,1
...

q(k)
F,i
...

q(k)
F,n(k)

F



,

q(k)
F,n(k)

F

− vector of nodal displacements,

n(k)
F = (nk + 1) (mk + 1) .

The number of generalised coordinates of electrode k is 6n(k)
F .

2.2. HFEM model

Discretisation of the electrode in the hybrid element method is carried
out in two steps. First, the primary division of each strip of the electrode(
j = 1, . . . , ny

)
into finite shell, four-node, rectangular elements (fes) is per-

formed as in the method presented in section 2.1. This stage enables us to
calculate the energy of spring deformation. During the next step of discreti-
sation, in accordance with the idea of the rigid finite element method, the
body considered is divided into the rigid finite elements (rfes) which assume
inertial features (Fig. 5).

Displacements and rotations of the rfe about its main inertial axes (Fig. 6)
are the generalised coordinates of the rfe:

q′k,l =
[

∆x′k,l ∆y′k,l ∆z′k,l ∆ϕ′ ∆θ′k,l ∆ψ′k,l
]
. (8)

Mass matrix of rfe l is diagonal, has constant elements and can be written
in the form:

Mk,l = diag
{

mk,l mk,l mk,l I x
k,l Iy

k,l Iz
k,l

}
, (9)

where: mk,l – mass of rfe l,
I x
k,l, I

y
k,l, I

z
k,l − mass moments of inertia of rfe l,

and since the generalised coordinates of the rfe are independent, the mass
matrix of the system of n(k)

H elements takes the following form:

M(k)
H = diag

{
Mk,1 Mk,2 · · · Mk,n(k)

H

}
(10)
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Fig. 5. Discretisation: primary and secondary divisions

Displacements of rfes cause deformations of primary elements. The algorithm
enabling the transformation of coordinates of rfes into the elastic coordinates
of primary elements and thus formulation of stiffness matrix C(k) of electrode
k is presented in [13] and [11].

Fig. 6. Generalised coordinates of rfe l

The equations of motion of electrode k can be written in the same form
as for the FEM model:

M(k)
H q̈(k)

H + C(k)
H q(k)

H = G(k)
H (11)
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where: M(k)
H – mass matrix,

C(k)
H − stiffness matrix with constant elements,

G(k)
h = −∂V

(k)
g

∂q(k)
H

− vector of gravity forces,

q(k)
H =



q′k,1
...

q′k,l
...

qk,n(k)
H



,

q′k,l − defined in (8),

n(k)
H = (nk + 1) (mk + 1) .

As in the FEM model the number of generalised coordinates is also n(k)
H ,

but the interpretation of coordinates is different.

2.3. FSM model

In the case of the finite strip method it is assumed that the field of
displacements of strip j of electrode k is described by the following functions:

u′
(
x′, y′, t

)
= X

(
x′, t

)
Y (u)

k, j
(
y′
)
, (12.1)

v′
(
x′, y′, t

)
= X

(
x′, t

)
Y (v)

k, j
(
y′
)
, (12.2)

w′
(
x′, y′, t

)
= X

(
x′, t

)
Y (w)

k, j
(
y′
)
, (12.3)

where: – coordinates as in Fig. 7,

X
(
x′, t

)
=

nk+1∑

i=−1
ai (t) φi

(
x′

)
,

(nk + 3) – number of terms in the approximation series X
(
x′, t

)
,

Y (u)
k, j = Pk, j

(
y′
)
q′(u)

k, j, Y (v)
k, j = Pk, j

(
y′
)
q′(v)k, j, Y (w)

k, j = Pk, j
(
y′
)
q′(w)

k, j ,

Pk, j
(
y′
)

=

[
− y′

bk, j
+ 1,

y′

bk, j

]
,

Qk, j
(
y′
)

=

1 −
3y′2

b2
k, j

+
2y′3

b3
k, j

, y′ − 2y′2

bk, j
+

y′3

b2
k, j

,
3y′2

b2
k, j

− 2y′3

b3
k, j

,− y′2

bk, j
− y′3

b2
k, j

 ,
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q′(u)
k, j =


u′k, j,1
u′k, j,2

 , q′(v)k, j =


v′k, j,1
v′k, j,2

 , g′(w)
k, j =



w′k, j,1
ϕ′k, j,1
w′k, j,2
ϕ′k, j,2


.

The functions φi
(
x′

)
appearing above are defined as follows [18]:

φi
(
x′

)
=



0(
x′ − x′i−2

)3

h3 + 3h2
(
x′ − x′i−1

)
+ 3h

(
x′ − x′i−1

)2 − 3
(
x′ − x′i−1

)3

h3 − 3h2
(
x′ − x′i+1

)
+ 3h

(
x′ − x′i+1

)2
+ 3

(
x′ − x′i+1

)3
(
x′i+2 − x′

)3

0

, if



x′ < x′i−2
x′i−2 ≤ x′ ≤ x′i−1
x′i−1 ≤ x′ ≤ x′i
x′i ≤ x′ ≤ x′i+1

x′i+1 ≤ x′ ≤ x′i+2

x′i+2 < x′

(13)
After transformations described in detail in [14], the kinetic and potential

energy of strip j of electrode k can be written in the following forms:

Tk, j = 1
2

nk+1∑
i=−1

[
q̇T

k, j,i,1 q̇T
k, j,i,2

] nk+1∑
l=−1


Mk, j,i,l,1,1 Mk, j,i,l,1,2

Mk, j,i,l,2,1 Mk, j,i,l,2,2




q̇k, j,i,1

q̇k, j,i,2

 , (14)

Ek, j = 1
2

nk+1∑
i=−1

[
qT

k, j,i,1 qT
k, j,i,2

] nk+1∑
l=−1


Ck, j,i,l,1,1 Ck, j,i,l,1,2

Ck, j,i,l,2,1 Ck, j,i,l,2,2




qk, j,i,1

qk, j,i,2

 , (15)

where: Mk, j,i,l,α,β, Ck, j,i,l,α,β – matrices with constant elements,

R̂k, j =



1 0 0 0
0 cos βk, j − sin βk, j 0
0 sin βk, j cos βk, j 0
0 0 0 1


,

q′k, j,i,s =



aiu′k, j,s
aiv′k, j,s
aiw′k, j,s
aiϕ
′
k, j,s


,

qk, j,i,s = R̂k, jq′k, j,i,s.
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The vectors of generalised coordinates of the electrodes can be presented
as follows:

qk, j =



qk,0,i

qk,1,i
...

qk, j,i
...

qk,mk−1,i
qk,mk ,i



, (16)

where: qk, j,i =
[
uk, j,ivk, j,iwk, j,iϕk, j,i

]T
for j = 0, 1, . . . ,mk ,

qk,0,i = qk,1,i,1,
qk, j,i = qk, j,i,2 = qk, j+1,i,1 for j = 1, . . . ,mk − 1,
qk,mk ,i = qk,mk ,2.

Fig. 7. Models of displacements of strip j of electrode k : a) coordinate system {k, j}′, b) nodal
displacements u′k, j,1, v

′
k, j,1, u

′
k, j,2, v

′
k, j,2 – polynomial Pk, j (y′), c) nodal displacements

w′k, j,1, ϕ
′
k, j,1,w

′
k, j,2, ϕ

′
k, j,2– polynomial Qk, j (y′)

After some transformations, the equations of motion of the electrode are
written as:

M(k)
S q̈(k)

S + C(k)
S q(k)

S = G(k)
S , (17)
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where: q(k)
S =



qk,−1
qk,0
...

qk,i
...

qk,nk

qk,nk+1



,

M(k)
S , C(k)

S − matrices with constant elements,

G(k)
S = −∂V

(k)
g

∂q(k)
S

− vector of gravity forces.

The number of generalised coordinates describing the motion of the
electrode k is 4 (nk + 3) (mk + 1) .

2.4. Connection between beams and electrodes

Because elastic connections are introduced between the beams and the
electrodes, there appear the coupling between vectors q(u) and q(k) as well as
vectors q(k) and q(d). In our research we assume that the connections between
the beams and the electrodes are realised by means of spring-damping ele-
ments (sdes). Fig. 8 shows the connection of strip j of electrode k with rfe e

Fig. 8. Connection between strip j of electrode k and rfe e of beam α
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of beam α(α = u when the electrode is connected with the upper beam and
α = d for the bottom beam). In the real structure of a system of electrodes,
the axes of connections are usually parallel to the axes of global reference
system {}.

Having taken into account the connections, we can write the equations of
motion of the whole system which, regardless of the model of the electrodes
used, take the form:



M(u) 0 · · · 0 · · · 0 0
0 M(1) · · · 0 · · · 0 0
...

...
. . .

...
...

...
...

0 0 · · · M(k) · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 · · · M(p) 0
0 0 · · · 0 · · · 0 M(d)


︸                                                      ︷︷                                                      ︸

M



q̈(u)

q̈(1)

...

q̈(k)

...

q̈(p)

q̈(d)


︸  ︷︷  ︸

q̈

+

(18)

+



C(u) C(u)
1 · · · C(u)

k · · · C(u)
p 0

C(1)
u C(1) · · · 0 · · · 0 C(1)

d
...

...
. . .

...
...

...
...

C(k)
u 0 · · · C(k) · · · 0 C(k)

d
...

...
...

...
. . .

...
...

C(p)
u 0 · · · 0 · · · C(p) C(p)

d

0 C(d)
1 · · · C(d)

k · · · C(d)
p C(d)


︸                                                   ︷︷                                                   ︸

C



q(u)

q(1)

...

q(k)

...

q(p)

q(d)


︸  ︷︷  ︸

q

=



−G(u)

−G(1)

...

−G(k)

...

−G(p)

−G(d) + Q(d)


︸               ︷︷               ︸

f

.

The equations of motion were integrated by the Newmark method with a
constant integration step which was chosen during some test calculations.
Sets of algebraic linear equations were solved using Super LU library v.4.0
(2009), taking band matrices M and C into consideration.

3. Comparison of the models and their validation

Computer programmes in Delphi 7.0 were developed on the basis of
the models presented. Vibrations of the system analysed can be simulated
for different geometrical and mass parameters, for example different number,
length and thickness of the electrodes or different number of strips in the
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electrode. Different dimensions of the beams and different courses of the
impulse force can be also analysed. Separately, the model in Abaqus was
also formulated.

Fig. 9. Test stand: a) general view, b) initial and c) final position of the beater

The results of calculations for the system of electrodes were compared
with those measured on the test stand (Fig. 9a). The impulse force is presented
in Fig. 2c. The test stand contains nine SIGMA VI collecting electrodes with
a length of 16.152 meters made of steel metal plates with a thickness of
0.0015 m.

In order to eliminate vibrations resulting from other sources than the
beater, its drive was switched off. The motion of the beater started by releas-
ing the beater from the position shown in Fig. 9b and finished by hitting the
anvil (Fig. 9c). The measurements were carried out in calm conditions, in the
temperature of about 20 degrees centigrade, using the apparatus consisting
of: three–axial vibration sensors ICP 356A02 made by PCB Piezotronics,
recorder TEAC LX110 and a laptop with LX Navi software. The signals
were registered with a frequency of 24 kHz for each channel. The sensors
were glued to the surface of the collecting electrodes. The scheme of position
of the measurement points is presented in Fig. 10.

Vibrations of the electrodes are fast alternating processes and the di-
rect comparison of courses is not effective. Thus in this paper we compare
quantities representing indirectly the acceleration courses in the domain of
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Fig. 10. Configuration of the control points in the system

amplitudes such as: peak value WMax, maximal peak-to-peak value WPtP and
RMS value WRMS defined by the following formulae:

WMax

(
as,^s ,i

)
= max

∣∣∣∣as,^s ,i

∣∣∣∣ ,
o≤t≤T

(19.1)

WPtP

(
as,^s ,i

)
= max as,^s ,i

o≤t≤T
(t) −min as,^s ,i (t) , (19.2)

WRMS

(
as,^s ,i

)
=


1
T

T∫

0

a2
s,^s ,i

dt



1
2

, (19.3)

where: T – time of analysis,
^s − index adopting values: N – when the signal was calculated ac-

cording to authors’ model, A – when Abaqus was used,
M – when the signal was measured,

i − number of the control point.
It is assumed that as,^s ,i occurring in the above formulae can be one of

the following quantities:

as,^s ,i =



ax,^s ,i − acceleration in the direction of axis x,

ay,^s ,i − acceleration in the direction of axis y,

a
τ,
^s ,i =

√
a2

x,^s ,i
+ a2

y,^s ,i
− tangential acceleration in plane xy,

a
ν,
^s ,i = az,^s ,i − normal acceleration to plane xy,

ac,^s ,i =

√
a2

x,^s ,i
+ a2

y,^s ,i
+ a2

z,^s ,i
− total acceleration,

and s belongs to {x, y, τ, ν, c} .
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The indicators used in fluid mechanics [19], [20] for estimation of micro-
scale and numerical models are applied as error measures:
– Factor FAC2γ:

FAC2γ =
1
np

np∑

i=1

N f
i , (20.1)

N f
i =


1 for

1
2
≤ Wγ

(
as,N,i

)
Wγ

(
as,M,i

) ≤ 2

0 otherwise
, (20.2)

where: Wγ
(
as,N,i

)
, Wγ

(
as,M,i

)
– calculated according to (19),

γ ∈ {Max,PtP,RMS},
np – number of control points;

– Hit rate qγ (as):

qγ (as) =
1
np

np∑

i=1

Nq
i , (21.1)

Nq
i =


1 for

1
2
≤

∣∣∣Wγ
(
as,N,i

) −Wγ
(
as,M,i

)∣∣∣
Wγ

(
as,M,i

) ≤ ε
0 otherwise

, (21.2)

where: ε – admissible error.
The results are acceptable if for value examined γ the indicators are as

follows: FAC2γ (as) ≥ 0.5 [21] and qγ (as) > 0.66 [20].
In the graphs presenting values of those indicators the following notation

is used for the calculations:
F – according to the FEM model,
H – according to the HFEM model,
S – according to the FSM model,
A – Abaqus,
M – for experimental measurements.
The calculations based on authors’ models were carried out for n1÷n9 =

400 and the integration step 5 × 10−6s. Time of analysis was 0.02s.
Fig. 11 presents the values of indicators FAC2Max (as) and qMax (as). The

values of FAC2Max (as) show good compatibility between the models and
the experimental measurements. For each acceleration component analysed,
values for not more than two control points are outside the acceptable range.
In the case of indicator qMax (as) the differences are between 0% and 29%.

Models F and S show very good compatibility in peak–to–peak values
of the normal component. In the case of the tangent component 4%–7% of
points are outside the range of admissible errors. Model S is characterised by
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Fig. 11. Validation – indicators a) FAC2Max (as), b) qMax (as)

a more uniform distribution of values of qMax (as). Only from 3 to 5 points
are outside the admissible range.

Fig. 12. Validation – indicators a) FAC2RMS (as), b) qRMS (as)

The analysis of values of the indicators FAC2RMS (as) and qRMS (as) pre-
sented in Fig. 12 shows very good compatibility between the results obtained
from models F and S and those of experimental measurements in the range
of peak values of normal and tangent accelerations. In the case of model
H the differences are observed at 3 to 5 control points for peak values of
normal acceleration.

4. Final remarks

The models presented in the paper (FEM, HFEM, and FSM) differ con-
siderably from each other in:

– functions approximating displacements u, v,w,
– ways of defining generalised coordinates,
– structure of mass M and stiffness C matrices.

This is the reason for the differences, and we can consider them justified
and acceptable. It should be underlined that for the same time of analy-
sis, integration step and number nk (Table 1), calculation times are similar
(Table 2). However, numbers of non–zero elements in matrices M and C
are different. For that reason it is difficult to state which method is better,
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Table 1.
Numerical parameters of models

Simulation time T = 2 × 10−2s

Integration step hc = 5 × 10−6s

Number of elements in a strip nk = 400

either in terms of numerical effectiveness or compatibility with experimental
measurements.

Table 2.
Time of numerical simulation and numbers of generalised coordinates

Model A M H S

Step a: Generation of matrices M and C – 21 s 18 s 297 s

Step b: Calculation of initial conditions, solution of statics – 97 s 79 s 131 s

Step c: Integration of equations of motion – 8302 s 2808 s 10545 s

Total time of realisation of algorithms a-c 169000 s 8420 s 2905 s 10973 s

Number of generalised coordinates – 433698 498660 290778

The validation of results presented in the paper proves that all models
correctly reflect the dynamics of the rapping system in the range of acceler-
ations of vibrations induced by an impulse force.

Manuscript received by Editorial Board, December 3, 2012;
final version, March 12, 2013.
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Porównanie metod modelowania drgań elektrod osadczych elektrofiltru suchego

S t r e s z c z e n i e

Elektrofiltry suche są powszechnie stosowane do odpylania przemysłowych gazów spali-
nowych. Utrzymanie ich wysokiej skuteczności zależy przede wszystkim od okresowego oczyszcza-
nia elektrod osadczych. Usuwanie pyłu z ich powierzchni realizuje się poprzez wywołanie okre-
sowych drgań elektrod. W pracy przedstawiono wyniki modelowania drgań układu elektrod osad-
czych. Wyniki uzyskano za pomocą metod: metody elementów skończonych, hybrydowej metody
elementów skończonych, metody pasm płytowych oraz modelu sformułowanego w pakiecie
ABAQUS. Wyniki obliczeń numerycznych porównano z wynikami uzyskanymi z pomiarów do-
świadczalnych. Sformułowano wnioski dotyczące skuteczności i numerycznej dokładności modeli
oraz przedyskutowano przyczyny różnic występujących pomiędzy nimi.


