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Abstract

The paper deals with the problem of bias randomization in evaluation of the measuring instrument capability. 
The bias plays a significant role in assessment of the measuring instrument quality. Because the measurement 
uncertainty is a comfortable parameter for evaluation in metrology, the bias may be treated as a component of 
the uncertainty associated with the measuring instrument. The basic method for calculation of the uncertainty in 
modern metrology is propagation of distributions. Any component of the uncertainty budget should be expressed 
as a distribution. Usually, in the case of a systematic effect being a bias, the rectangular distribution is assumed. 
In the paper an alternative randomization method using the Flatten-Gaussian distribution is proposed. 
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1.	 Introduction

The paper [1] presents a  method for randomizing the bias of a  measuring instrument. 
The method is based on the Flatten-Gaussian distribution [2]. Usually, the bias of a measuring 
instrument is treated as a  systematic effect, although is a  part of coverage interval [3]. In 
metrology the bias is defined as estimate of a  systematic measurement error [4]. In many 
cases the known systematic effect is not corrected, but instead is treated as an uncertainty 
contribution. This approach is presented in the international standard concerning the capability 
of measurement processes [5]. The measurement uncertainty, as a  parameter, is used to 
assessment of the measuring instrument quality. This quality depends on a  relation between 
the measurement uncertainty and a reference. Usually, a maximum permissible error associated 
with the measuring instrument is used as a reference. 

2.	 Capability of measuring instrument

The capability ratio of a measuring instrument is defined as:
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where: UMS is the expanded uncertainty expressed usually for the coverage probability of 95%, 
associated with the measuring instrument, and Emax is the maximum permissible error acceptable 
for that instrument. The combined standard uncertainty associated with the measuring instrument 
consists of several components:
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where: urep – the standard uncertainty associated with repeatability of measurement using 
a reference standard; ures – the standard uncertainty associated with the resolution of measuring 
instrument; ubias – the standard uncertainty arising from the bias; ucal – the standard uncertainty 
associated with calibration of the measurement standard; utemp – the standard uncertainty 
associated with temperature differences.

The first component is directly associated with the measuring instrument and refers to 
dispersion of indications on the reference standard carried out under repeatable conditions. 
The standard uncertainty of this component is an experimental standard deviation of a single 
indication qi obtained from a series of n observations:
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It is recommended that the minimum number of indications is a series of n = 30 observations 
[5]. This component is associated with the normal distribution.

The second component is the resolution of measuring instrument. The standard uncertainty 
associated with the resolution R is based on the rectangular distribution:

	
32

res
R

u = .		  (4)

The third component is the bias, regarded as the difference between the average of a series 
of observations and the reference value qs:

	 sqqB −= .		  (5)

In this case the reference value is represented by the measurement standard. The bias B 
is treated as a  component of the uncertainty [5]. The bias is randomized by the rectangular 
distribution giving the standard uncertainty:

	
3
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B
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The next component of uncertainty is associated with calibration of the measurement 
standard. In the calibration certificate there is given the expanded uncertainty U and the 
coverage factor k for the confidence level of approximately 95%. Therefore, the standard 
uncertainty is:

	
k

U
u =cal .		  (7)

Usually, the factor k = 2, when we assume the normal distribution. 
The last component is associated with an impact of environmental conditions on the value 

represented by the reference standard. In general, it is the effect of temperature. In this case 
changes of the standard value will be defined by the following relationship:

	 LtL ⋅⋅∆=∆ α ,		  (8)

where: ∆t is the variation of temperature during testing of the measuring instrument, α is the 
coefficient of thermal expansion of the standard value L. The standard uncertainty is [5]:
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To this component the rectangular distribution is attributed.
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Based on the above assumption, we can select five components of uncertainty associated 
with the measurand, and we can form a measurement equation defining the output quantity y as 
the sum of five input quantities xi:

	 rep res bias cal temp ,y x x x x x= + + + + 	 (10)

where: xrep – the input quantity associated with repeatability of measurement using the 
reference standard, having the normal distribution; xres – the input quantity associated with the 
resolution of measuring instrument, having the rectangular distribution; xbias – the input quantity 
associated with the bias, having the rectangular distribution; xcal – the input quantity associated 
with calibration of the measurement standard, having the normal distribution; xtemp – the input 
quantity associated with temperature differences, having the rectangular distribution.

The input quantity represents the set of possible values having determined probability 
distributions. We can use propagation of distributions through the measurement model to 
calculate the output quantity, as in the method recommended in [6]. The measurement model 
is represented by (10). The set of possible values associated with the output quantity can be 
calculated using the Monte Carlo procedure. This procedure creates a numerical distribution 
function of the measurand, which covers the coverage interval for the coverage probability of 
95%, with low ylow and high yhigh endpoints. The expanded uncertainty is a half-width of this 
interval:

	 high low
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3.	 Randomization of measuring instrument bias

The bias of measuring instrument is a  systematic effect, estimated by (5). Two quantities 
define the bias: the average of measuring instrument indications on the reference standard, and 
the value of reference standard [5]. Two components of uncertainty are associated with the bias. 
One component is associated with the average, and is expressed by the experimental standard 
deviation of the mean [3]:
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The second component of the bias is associated with calibration of the measurement 
standard, and is expressed by (7). Then, the combined uncertainty attributed to the bias is: 

	 ( ) ( ) 2
cal
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We can create a new random variable containing the bias B and its uncertainty u(B), as in 
Fig. 1. This random variable may be characterized by the Flatten-Gaussian distribution [2]. The 
Flatten-Gaussian distribution has a parameter r approximated by the following formula [1]:
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and may be generated, using the Monte Carlo procedure, by the following equation:
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where zR is a random variable having the rectangular distribution, and zN is a random variable 
having the normal distribution, because the Flatten-Gaussian distribution is a  convolution 
of rectangular and normal distributions with the parameter r, as the quotient of its standard 
deviations [2].

Fig. 1. Randomizing of the bias: gx(ξ) is the probability density function with the variable ξ  
for the input quantity xrand.

When we use the above randomization, the equation of measurand defined by (10) is reduced 
to four input quantities:

	 rep res rand temp ,y x x x x= + + + 	 (16)

where the input quantity xrand has the Flatten-Gaussian distribution.

4.	 Practical example

The above considerations can be used to evaluate the capability of a  typical measuring 
instrument which is, for example, a  micrometer. This capability is assessed using a  gauge 
block as the measurement standard . The measurement standard has a calibration certificate 
stating that the length of gauge block is 20,0002 mm, which was determined with the expanded 
uncertainty 0,1 μm, for the coverage probability of approximately 95%. The 30 micrometer 
readings on the gauge block are indicated (Table 1).

Table 1. Indications of the micrometer on the gauge block.

20,001 mm
20,001 mm
20,001 mm
20,002 mm
20,001 mm
20,001 mm
20,001 mm
20,000 mm
20,001 mm
20,001 mm

20,001 mm
20,000 mm
20,001 mm
20,001 mm
20,001 mm
20,001 mm
20,001 mm
20,001 mm
20,002 mm
20,001 mm

20,001 mm
20,001 mm
20,000 mm
20,001 mm
20,001 mm
20,001 mm
20,002 mm
20,001 mm
20,001 mm
20,001 mm

l = 20,001 mm
s(l) = 0,00045 mm

The first component is the scattering of micrometer indications on the gauge block. 
The standard uncertainty associated with this component is:

 	 ( )rep 0,45 mu s l= = µ .	 (17)

–
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where zR is a random variable having the rectangular distribution, and zN is a random variable 
having the normal distribution, because the Flatten-Gaussian distribution is a  convolution 
of rectangular and normal distributions with the parameter r, as the quotient of its standard 
deviations [2].

Fig. 1. Randomizing of the bias: gx(ξ) is the probability density function with the variable ξ  
for the input quantity xrand.

When we use the above randomization, the equation of measurand defined by (10) is reduced 
to four input quantities:

	 rep res rand temp ,y x x x x= + + + 	 (16)

where the input quantity xrand has the Flatten-Gaussian distribution.

4.	 Practical example

The above considerations can be used to evaluate the capability of a  typical measuring 
instrument which is, for example, a  micrometer. This capability is assessed using a  gauge 
block as the measurement standard . The measurement standard has a calibration certificate 
stating that the length of gauge block is 20,0002 mm, which was determined with the expanded 
uncertainty 0,1 μm, for the coverage probability of approximately 95%. The 30 micrometer 
readings on the gauge block are indicated (Table 1).

Table 1. Indications of the micrometer on the gauge block.

20,001 mm
20,001 mm
20,001 mm
20,002 mm
20,001 mm
20,001 mm
20,001 mm
20,000 mm
20,001 mm
20,001 mm

20,001 mm
20,000 mm
20,001 mm
20,001 mm
20,001 mm
20,001 mm
20,001 mm
20,001 mm
20,002 mm
20,001 mm

20,001 mm
20,001 mm
20,000 mm
20,001 mm
20,001 mm
20,001 mm
20,002 mm
20,001 mm
20,001 mm
20,001 mm

l = 20,001 mm
s(l) = 0,00045 mm

The first component is the scattering of micrometer indications on the gauge block. 
The standard uncertainty associated with this component is:

 	 ( )rep 0,45 mu s l= = µ .	 (17)

–

The second component under consideration is the resolution R = 1 μm of micrometer display. 
The standard uncertainty associated with this component is:

	 res 0,29 m
2 3

R
u = = µ .	 (18)

The third component is the bias. The estimate of a  gauge block length measured by the 
micrometer, as the mean indication, is 20,001 mm, but the length of gauge block, based on the 
calibration certificate, is ls = 20,0002 mm. Then, the bias is:

	 s 0,8 mB l l= − = µ ,	 (19)

and the standard uncertainty associated with the bias is:

	 bias 0,46 m
3

B
u = = µ .	 (20)

The fourth component under consideration is the uncertainty associated with the gauge block 
length. The calibration certificate of measurement standard states that the expanded uncertainty 
U = 0,1 μm, as the standard uncertainty multiplied by the coverage factor k = 2 is such that the 
coverage probability corresponds to approximately 95%. Then the standard uncertainty is:

	
cal 0,05 m

U
u

k
= = µ .	 (21)

The fifth component is related to the temperature effect on the measurement standard. 
The  thermal coefficient of expansion of steel alloy, which the gauge block is made of, is 
α  =  12·10–6  1/oC. The measurement was carried out at the temperature changing within the 
range Δt = ±1oC. The limit of changing the gauge block dimension is:

	 0,24 mL t Lα∆ = ∆ ⋅ ⋅ = µ .	 (22)

Then, the standard uncertainty associated with this component is:

	 temp 0,14 m
3

L
u

∆
= = µ . 	 (23)

We can formulate a  measurement model defining the measurand l associated with the 
measurement of gauge block length by the micrometer:

	 tempcalbiasresrep lllllll δδδδδ +++++= ,	 (24)

where: l  is the average of micrometer indications on the measurement standard, and δli are the 
influence quantities corresponding with above components. The uncertainty budget associated 
with the output quantity is presented in Table 2. The measurement model enables calculation 
using the Monte Carlo method. We can use the procedure recommended by [6]. Selecting the 
number of Monte Carlo trail M = 104, we calculate M times (24) by drawing every time the 
numerical value from each distribution attributed to the input quantities. The set of M numerical 
values attributed to the output quantity are sorted in increasing order. The sorted values have 
the probability from 1/M to one. The set of output quantities (measurand) creates a discrete 
representation of the distribution function, as in Fig. 2. The output quantity values having 
the probabilities 2,5% and 97,5% define the endpoints of 95% coverage interval. Half of the 
coverage interval length is the expanded uncertainty. 

The endpoints of coverage interval, calculated with the above procedure, are 
llow  =  19,9996  mm and lhigh  =  20,0024  mm, what gives the expanded uncertainty value 
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UMS = 1,4 μm. The standard uncertainty associated with measurand is u(l) = 0,72 μm. Assuming 
the maximum permissible error Emax

  =  ±5  µm, we obtain the micrometer measurement 
capability ratio QMS = 28%.

Table 2. The uncertainty budget of the measurand defined by (24).

Quantity Estimate Probability distribution Standard uncertainty
δlrep 0 mm normal 0,00045 mm
δlres 0 mm rectangular 0,00029 mm
δlbias 0 mm rectangular 0,00046 mm
δlcal 0 mm normal 0,00005 mm
δltemp 0 mm rectangular 0,00014 mm

l 20,001 mm 0,00072 mm
 
a)					            b)

Fig. 2. The distribution function a), and the histogram b), for the measurand calculated with (24).

Using the method of randomization of the measuring instrument bias, we can form the 
following equation for the measurand: 

	 temprandresrep llllll δδδδ ++++= .	 (25)

The number of input quantities is reduced by one, and is summarized in Table 3. The quantity 
δlrand randomized by the Flatten-Gaussian distribution has parameters: u(B)  =  0,1  μm, and 
r = 6,5, calculated with (13) and (14), respectively. Then, the standard uncertainty associated 
with this quantity calculated by the Monte Carlo method with the formula (15) is u(δlrand) = 
0,6 μm.

Table 3. The uncertainty budget of the measurand defined by (25).

Quantity Estimate Probability distribution Standard uncertainty
δlrep 0 mm normal 0,00045 mm
δlres 0 mm rectangular 0,00029 mm
δlrand 0 mm Flatten-Gaussian 0,00060 mm
δltemp 0 mm rectangular 0,00014 mm

l 20,001 mm 0,00082 mm

The endpoints of coverage interval, calculated for (25) with the Monte Carlo method are as 
follows: llow = 19,9994 mm and lhigh = 20,0026 mm, what gives the expanded uncertainty value 
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UMS = 1,6 μm (the standard uncertainty associated with the measurand u(l) = 0,82 μm). This 
value is higher than that calculated with the equation (24), giving the value of the measuring 
instrument capability ratio QMS  =  32%. The distribution function and the histogram for the 
measurand defined by (25) are presented in Fig. 3.

a)					            b)

Fig. 3. The distribution function a), and the histogram b), for the measurand calculated with (25).

The above presented procedure may be used for testing the capability of any measuring 
instrument. For example, we can apply this method also for evaluation of the manometer 
measurement capability using a  pressure gauge tester. The typical manometer has the 
measuring range of up to 25 MPa. The pressure gauge tester, as the reference standard, forces 
p = 20 MPa. We can use the deadweight piston gauge with the accuracy class 0,05. The average 
of manometer readings is 19,9 MPa, with the resolution 0,1 MPa, as one tenth of the scale 
interval. Then, we can form the following measuring equation, as the measurand:

	 randresrep ppppp δδδ +++= ,	 (26)

summarizes all components in Table 4, as the uncertainty budget. 

Table 4. The uncertainty budget of the measurand defined by (26).

Quantity Estimate Probability distribution Standard uncertainty
δprep 0 MPa normal 0,045 MPa
δpres 0 MPa rectangular 0,029 MPa
δprand 0 MPa Flatten-Gaussian 0,072 MPa

p 19,9 MPa 0,090 MPa

The (26) has only three components, because the temperature does not affect the pressure 
forced by the deadweight piston gauge. The bias of pressure is B  =  0,1  MPa with the 
uncertainty u(B) = 0,01 MPa, calculated with (5) and (13). The standard uncertainty ucal, in (13) 
is determined on the basis of the accuracy class of deadweight piston gauge, with:

	 cal

0,05

100 3

p
u

⋅
=

⋅
.	 (27)

Using the Monte Carlo procedure we can calculate the endpoints of coverage interval 
plow  =  19,73  MPa and phigh  =  20,07  MPa, what gives the expanded uncertainty value 
UMS = 0,17 MPa. If we assume that the maximum permissible error Emax = ±0,5 MPa, as half of 
the scale interval of manometer, then the measuring instrument capability ratio is QMS = 34%.
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5.	 Conclusions

The measurement uncertainty can be a  convenient parameter for metrological evaluation 
of the measuring instrument quality. Analysis of the uncertainty should take into account 
all metrological influences associated with a  measurement, such as a  randomized bias. The 
bias may be randomized by the rectangular distribution, but the Flatten-Gaussian distribution 
contains the uncertainty components associated with the bias value. Then, the capability of 
measuring instrument is greater, but more reliable. 

Calculation of the measurement uncertainty is used in assessment of conformity. The 
common rule of conformity assessment is to define the maximum permissible uncertainty 
MPU [7]. The MPU may be called also TUR (test uncertainty ratio), which usually has to 
be not greater than 1/3 of the MPE (maximum permissible error) [8]. This relation between 
MPU and MPE is commonly acceptable in trade [9] and industry [10], and usually is treated 
as the criterion of legal metrology [11]. The calculation of measuring instrument uncertainty 
performed above may be used to satisfy this criterion. Using the Monte Carlo method makes 
credible the acceptance criteria in the conformity assessment [12]. 
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