Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The leachability of pollutants from asbestos-containing waste, previously used for roofing was investigated. Laboratory tests were performed under static conditions (tests 1–20) in accordance with the TCLP methodology (with the use of acetic acid as the leaching medium, initial pH = 3.15). The maintaining of constant leaching conditions proved to be impossible at the experimental stage. Following the stabilization of conditions, the pH range for the obtained solutions increased to an average value of 8.3. Aluminum, boron, barium, cadmium, chromium, copper, iron, nickel, lead, strontium, zinc, and mercury were identified in the eluate. The low leachability of individual metals under the planned conditions was observed. In general, no leaching of such metals as cadmium, nickel, and lead was observed. The mercury content in the eluates is below the quantification limit, but the obtained values fall to around the limit of detection for the element. As compared with leaching with the use of distilled water (Klojzy-Karczmarczyk et al. 2021), zinc and boron additionally appear in eluates. The determined value of leachability for the individual analyzed elements increases from double to a few times with the use of the TCLP method. The value of leaching for barium is on average 5.56 mg/kg, for chromium it is 1.10 mg/kg, for copper 0.26 mg/kg, and for iron 0.80 mg/kg. In addition, the leaching of boron of around 3.00 mg/kg and of zinc 1.84 mg/kg was found. Higher leachability values were found only for strontium and aluminum. The leaching of strontium is on average around 62 mg/kg. While the leaching of aluminum is lower than values identified in the previous tests with the use of distilled water and is around 2.76 mg/kg. Products of leaching contain mainly pollutants characteristic of cement (aluminum, strontium, and iron).
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The asbestos removal in Poland is carried out based on the Programme of Country Cleaning from Asbestos for the Years 2009–2023. Pursuant to this document asbestos-containing materials should be removed from the territory of the whole country by the end of 2032. The pace of asbestoscontaining products removal was estimated and also the time necessary to implement this process. These figures were estimated using two resources of data. The data gathered in the Asbestos Database (Asbestos Database... 2022) were analysed, and the analysis of detailed stocktaking and its update for 20 selected communes of various nature was carried out. The pace of removing in the analysed communes is definitely diversified. The obtained values generally range from 0.28 to 6.35 kg/R/y (kg per resident/year). An averaged pace of asbestos removal for the entire country is from 2.24 to 3.65 kg/R/y, depending on the adopted method of calculations. The analysis has shown that considering the current pace of asbestos-containing products removing, these materials will not be removed from the area of Poland by the set date, i.e. by the end of 2032. In individual provinces the amount of asbestos and the pace of removal are drastically different. Retaining the current pace of asbestoscontaining products removing, such products will disappear from Poland only within 27–193 years, depending on the province. An average pace of removal, given for the country scale, allows to state that 83 years are needed for the total removal of asbestos products.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Jarosław Staszczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more