Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cermet coatings provide protection against aggressive operating environment of machine and device elements, such as corrosion, wear or high-temperature conditions. Currently WC-based cermet coatings are frequently used in the different industry branches. In this work, conventional WC-based powders (WC-Co and WC-Co-Cr) were sprayed with High Velocity Oxy Fuel (HVOF) onto AZ31 magnesium alloy with different spray distances (320 and 400 mm). The aim of the research was to investigate the effect of the spray distance on the microstructure of the coatings, phase composition and electrochemical corrosion resistance. Results revealed that higher spray distance results in greater porosity, 1.9% and 2.3% for 320 mm and 2.8% and 3.1% for 400 mm in case of WC-Co and WC-Co-Cr coatings, respectively. Also the influence has been observed for coatings microhardness, c.a. 1300 HV0.3 for shorter spray distance, whereas for longer one it was less than 1100 HV0.3. The corrosion resistance estimated in potentiodynamic polarization measurements was the best for WC-Co-Cr coating deposited from the shorter spray distance, corrosion current density was equal to 2.9 µA·cm-2 and polarization resistance was equal to 8424 Ω∙cm2.
Go to article

Authors and Affiliations

Ewa Jonda
1
ORCID: ORCID
Leszek Łatka
2
ORCID: ORCID
Artur Maciej
3
Marcin Godzierz
4
Klaudiusz Gołombek
5
ORCID: ORCID
Andrzej Radziszewski
6

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  2. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, ul. Łukasiewicza 5, 50-371 Wroclaw, Poland
  3. Silesian University of Technology, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6B, 44-100 Gliwice, Poland
  4. Polish Academy of Sciences, Centre of Polymer and Carbon Materials, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
  5. Silesian University of Technology, Laboratory of the Testy Materials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  6. “RESURS” Company, A. Radziszewski, ul. Czarodzieja 12, 03-116 Warszawa, Poland

This page uses 'cookies'. Learn more