Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Machines utilising renewable energy constantly undergo research aimed at raising their efficiency. One of them is a Savonius wind turbine, where scientists propose adjustments to improve its aerodynamic properties. At present, their assessment is usually performed by means of transient computational fluid dynamics simulations with two- or threedimensional models. In this paper, the overset (chimera) mesh approach was applied to investigate the performance of a Savonius wind turbine equipped with deformable blades. They were continuously deformed during rotation by a dedicated mechanism to increase a positive torque of the advancing blade, and meanwhile, decrease a negative torque of the returning blade. A quasi-two-dimensional model with a two-way fluid-structure interaction method was applied, where the structural solver determined blade deflection caused by the predefined deformation mechanism and aerodynamic loads, whereas the coupled computational fluid dynamics solver determined the transient flow. The deformable blades rotor performance was calculated and compared with a conventional rigid Savonius turbine, both simulated using the overset mesh approach. The average value of the power coefficient achieved a 55% rise in the case of deformable blades turbine. Additionally, to validate the overset method, its results were compared with the classical sliding mesh method for a conventional rigid rotor.
Go to article

Bibliography

[1] Akwa J.V., Vielmo H.A., Petry A.P.: A review on the performance of Savonius wind turbines. Renew. Sust. Energ. Rev. 16(2012), 5, 3054–3064.
[2] Masdari M., Tahani M., Naderi M.H., Babayan N.: Optimization of airfoil Based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm. J. Clean. Prod. 222(2019), 47–56.
[3] Alom N., Saha U.K..: Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation. Energ. Convers. Manage. 186(2019), 267–277.
[4] Zemamou M., Aggour M., Toumi A.: Review of savonius wind turbine design and performance. Energy Proced. 141(2017), 383–388.
[5] Tartuferi M., D’Alessandro V., Montelpare S., Ricci R.: Enhancement of savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems. Energy 79(2015), 371–384.
[6] Mauro S., Brusca S., Lanzafame R., Messina M.: CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance. Renew. Energ. 141(2019), 28–39.
[7] Sobczak K., Obidowski D., Reorowicz P., Marchewka E.: Numerical investigations of the savonius turbine with deformable blades. Energies 13(2020), 14, 3717.
[8] Obidowski D., Sobczak K., Jozwik K., Reorowicz P.: Vertical Axis Wind Turbine with a Variable Geometry of Blades. European Patent Application 19199085.2, 24 Sept. 2019.
[9] Kamoji M.A., Kedare S.B., Prabhu S.V..: Experimental investigations on single stage modified Savonius rotor. Appl. Energ. 86(2009), 7-8, 1064–1073.
[10] Lipian M., Czapski P., Obidowski D.: Fluid-structure interaction numerical analysis of a small, urban wind turbine blade. Energies 13(2020), 7, 1–15.
[11] Marzec Ł., Bulinski Z., Krysinski T.: Fluid structure interaction analysis of the operating Savonius wind turbine. Renew. Energ. 164(2021), 272–284.
[12] Chan C.M., Bai H.L., He D.Q.: Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Appl. Energ. 213(2018), 148–157.
[13] Saeed H.A.H., Elmekawy A.M.N., Kassab S.Z.: Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alexandria Eng. J. 58(2019), 2, 429–441.
[14] Mohamed M.H., Janiga G., Pap E., Thcvenin D.: Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew. Energ. 35(2010), 11, 2618–2626.
[15] Kacprzak K., Liskiewicz G., Sobczak K.: Numerical investigation of conventional and modified Savonius wind turbines. Renew. Energ. 60(2013), 578–585.
[16] ANSYS Inc.: ANSYS Fluent 20.2 User’s Guide. ANSYS Inc., Canonsburg, 2020.
[17] ANSYS Inc.: https://www.ansys.com/. ANSYS Inc., Canonsburg, 2020.
[18] Menter F.R., Langtry R., Völker S, Huang P.G.: Transition modelling for general purpose CFD codes. In: Proc. ERCOFTAC Int. Symp. on Engineering Turbulence Modelling and Measurements 6; ETMM6, Sardinia, 23-25 May 2005, 31–48.
[19] Kerikous E., Thévenin D.: Optimal shape of thick blades for a hydraulic Savonius turbine. Renew. Energ. 134(2019), 629–638.
Go to article

Authors and Affiliations

Emil Marchewka
1
Krzysztof Sobczak
1
Piotr Reorowicz
1
Damian Stanisław Obidowski
1
Krzysztof Jóźwik
1

  1. Lodz University of Technology, Institute of Turbomachinery, Wólczanska 219/223, 90-924 Łódz, Poland

This page uses 'cookies'. Learn more