Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Rankine cycle steam turbine power plants make a base for world electricity production. The efficiency of modern steam turbine units is not higher than 43–45%, which is remarkably lower compared to the combined cycle power plants. However, an increase in steam turbine power plant efficiency could be achieved by the rise of initial cycle parameters up to ultra-supercritical values: 700–780˚C, 30–35 MPa. A prospective steam superheating technology is the oxy-fuel combustion heating in a sidemounted combustor located in the steam pipelines. This paper reviews thermal schemes of steam turbine power plants with one or two side-mounted steam superheaters. An influence of the initial steam parameters on the facility thermal efficiency was identified and primary and secondary superheater parameters were optimized. It was found that the working fluid superheating in the side-mounted oxy-methane combustors leads to an increase of thermal efficiency higher than that with the traditional boiler superheating in the initial temperature ranges of 700–780˚C and 660–780˚C by 0.6% and 1.4%, respectively.
Go to article

Bibliography

[1] Ohji A., Haraguchi M.: Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 11–40.
[2] Chiesa P., Macchi E.: A thermodynamic analysis of different options to break 60% electric efficiency in combined cycle power plants. J. Eng. Gas Turbines Power. 126(2004), 4, 770–785.
[3] Tanuma T.: Advances in Steam Turbines for Modern Power Plants. Woodhead, 2017.
[4] Bugge J., Kjaer S., Blum R.: High-efficiency coal-fired power plants development and perspectives. Energy 31(2006), 10-11, 1437–1445.
[5] Susta, M.R., Seong, K.B.: Supercritical and ultra-supercritical power plants-SEA’s vision or reality. In: Proc. Powergen Asia, Bangkok, 2004.
[6] Kotowicz J., Łukowicz H., Bartela Ł., Michalski S.: Validation of a program for supercritical power plant calculations. Arch. Thermodyn. 32(2011), 4, 81–89.
[7] Fan C., Pei D., Wei H.: A novel cascade energy utilization to improve efficiency of double reheat cycle. Energ. Convers. Manag. 171(2018), 1388–1396.
[8] Li Y., Zhou L., Xu G., Fang Y., Zhao S., Yang Y.: Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant. Energy 74(2014), 202–214.
[9] Liu Y., Li Q., Duan X., Zhang Y., Yang Z., Che D.: Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant. Energy 145(2018), 25–37.
[10] Łukowicz H., Dykas S., Rulik S., Stepczynska K.: Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Arch. Thermodyn. 32(2011), 3, 231–245.
[11] Zaryankin A., Rogalev A., Komarov I., Kindra V., Osipov S.: The boundary layer separation from streamlined surfaces and new ways of its prevention in diffusers. In: Proc. 12th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, 3-7 April 2017, ETC2017-168.
[12] Kowalczyk Ł., Elsner W., Drobniak S.: Thermoeconomic analysis of supercritical coal fired power plant using RRM method. in Polish: Analiza termoekonomiczna nadkrytycznego bloku weglowego przy uzyciu metody RRM. Arch. Thermodyn. 32(2011), 3, 215–229.
[13] Kosman W.: The influence of external cooling system on the performance of supercritical steam turbine cycles. Arch. Thermodyn. 31(2010), 3, 131–144.
[14] Zaryankin A., Rogalev A., Kindra V., Khudyakova V., Bychkov N.: Reduction methods of secondary flow losses in stator blades: Numerical and experimantal study. In: Proc. 12th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, 3-7 April 2017, ETC2017-158.
[15] Zaryankin A., Rogalev A., Garanin I., Osipov S.: Methods of low-pressure cylinders throughput improvement for construction of ultra-high capacity generation units. WIT Trans. Ecol. Environ. 195(2015), 149–160.
[16] Aminov R.Z., Egorov A.N.: Hydrogenoxygen steam generator for a closed hydrogen combustion cycleInt. J. Hydrog. Energy 44(2019), 21, 11161–11167.
[17] Rogalev N., Prokhorov V., Rogalev A., Komarov I., Kindra V.: Steam boilers’ advanced constructive solutions for the ultra-supercritical power plants. Int. J. Appl. Eng. Res. 1(2016), 18, 9297–9306.
[18] Milman O., Yankov G., Krylov V., Ptahin A.: High efficiency steam-gas mixture condenser. J. Phys. Conf. Ser. 1683(2020), 4, 042074.
[19] Milman O., Krylov V., Ptakhin A., Kondratev A., Yankov G.: Steam condensation from a moving steam-gas mixture. Therm. Eng. 65(2018), 12, 916–921.
[20] Zou C., Song Y., Li G., Cao S., He Y., Zheng C.: The chemical mechanism of steam’s effect on the temperature in methane oxy-steam combustion. Int. J. Heat Mass Transf. 75(2014), 12–18.
[21] Mazas A.N., Fiorina B., Lacoste D. A., Schuller T.: Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame 158(2011), 12, 2428–2440.
[22] Jin B., Zhao H., Zou C., Zheng C.: Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energ. Convers. Manag., 99(2015), 92–101.
[23] Milman O., Shifrin B.A.: High-temperature steam turbine unit running on natural gas. In: Proc. of Sem. of the Laboratory for Hydrogen Energy Technologies of JIHT RAS, Moscow 2017, 143–149
[24] Klimenko A.V., Milman O.O., Shifrin B.A.: A high-temperature gas-and-steam turbine plant operating on combined fuel. Therm. Eng. 62(2015), 11, 807–816.
[25] Van der Ham L.V., Kjelstrup S.: Exergy analysis of two cryogenic air separation processes. Energy 35(2010), 12, 4731–4739.
[26] Kotowicz J., Balicki A.: Enhancing the overall efficiency of a lignite-fired oxyfuel power plant with CFB boiler and membrane-based air separation unit. Energ. Convers. Manag. 80(2014), 20–31.
[27] Aspen Plus. https://www.aspentech.com/en/products/engineering/aspen-plus (acessed 21 March 2020).
Go to article

Authors and Affiliations

Vladimir Olegovich Kindra
1
Sergey Konstantinovich Osipov
1
Olga Vladimirovna Zlyvko
1
Igor Alexandrovich Shcherbatov
1
Vladimir Petrovich Sokolov
1

  1. National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia

This page uses 'cookies'. Learn more