Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Estimating the pathloss and signal strength of the transmitted signal at specific distances is one of the main objectives of network designers. This paper aims to provide generalized pathloss models appropriate for urban areas in Muscat the capital city of the Sultanate of Oman environment. The research includes studying different models of pathloss for the 4G cellular network at Muttrah Business District (MBD) at Muscat. Different models (Free Space model, Okumura Hata, Extended Sakagami, Cost231 Hata, ECC-33 Hata – Okumura extended, Ericsson, Egli, and SUI) are used with 800MHz. The results of the prediction models are compared with real measured data by calculating RMSE. The generalized models are created by modified original models to get accepted RMSE values. Different cells at MBD are tested by modified models. The RMSE values are then calculated for verification purposes. To validate the modified pathloss models of 4G, they are also applied at different cells in a different city in the capital. It has approximately the same environment as MBD. The modified pathloss models provided accepted predictions in new locations.
Go to article

Authors and Affiliations

Nawal Al-Aamri
1
Zia Nadir
1
Hassan Al-Lawati
1
Mohammed Bait Suwailam
1

  1. ECE Dept. at College of Engineering at SQU, Muscat, Sultanate of Oman
Download PDF Download RIS Download Bibtex

Abstract

Pressure retarded osmosis is a process that enables useful work generation from the salinity difference of solutions. The literature most often considers using pressure retarded osmosis with natural sodium chloride (NaCl) solutions, such as seawater, dedicated for open systems. To explore the full potential of this process, however, optimized, highly concentrated solutions of various compounds can be used. The presented research is focused on evaluating the impact of increasing draw solution temperature and concentration on the permeate flow in the osmotic process. The permeate flow is directly related to achievable work in this process, therefore, it is important to find feed and draw solution parameters that maximize it. An experimental setup developed in this study provides full control over the process parameters. Furthermore, the performance characteristics of the membrane over process time were investigated, as it became evident during preliminary experiments that the membrane impact is significant. The studies were conducted without back-pressure, in a configuration typical of the forward osmosis process, with solution circulation on both sides of the membrane. The obtained results show a clear positive impact of both the temperature and concentration increase on the potential output of a pressure retarded osmosis system. The membrane behaviour study allowed for correct interpretation of the results, by establishing the dynamics of the membrane degradation process.
Go to article

Authors and Affiliations

Fabian Dietrich
1
Łukasz Cieślikiewicz
1
Piotr Furmański
1
Piotr Łapka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 21/25 Nowowiejska St., 00-665 Warsaw, Poland

This page uses 'cookies'. Learn more