Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An efficiency of the nonsingular meshless method (MLM) was analyzed in an acoustic indoor problem. The solution was assumed in the form of the series of radial bases functions (RBFs). Three representative kinds of RBF were chosen: the Hardy’s multiquadratic, inverse multiquadratic, Duchon’s functions. The room acoustic field with uniform, impedance walls was considered. To achieve the goal, relationships among physical parameters of the problem and parameters of the approximate solution were first found. Physical parameters constitute the sound absorption coefficient of the boundary and the frequency of acoustic vibrations. In turn, parameters of the solution are the kind of RBFs, the number of elements in the series of the solution and the number and distribution of influence points. Next, it was shown that the approximate acoustic field can be calculated using MLM with a priori error assumed. All approximate results, averaged over representative rectangular section of the room, were calculated and then compared to the corresponding accurate results. This way, it was proved that the MLM, based on RBFs, is efficient method in description of acoustic boundary problems with impedance boundary conditions and in all acoustic frequencies.

Go to article

Authors and Affiliations

Edyta Prędka
Adam Brański
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new concept of disinfection traditionally applied in water treatment systems. The new definition of this process results from the change in its functionality, aims and methods, which guarantee high quality of water supply. The literature review and technical practice demonstrate a demand for disinfection to act as a functional element of the integrated water distribution system and an active intermediate link between the technology of water treatment and the water distribution network. The presented concept of a disinfection process enables evaluation of water treatment, increases its effectiveness in integrated water treatment systems. Such defined disinfection addresses water conservation and its biological stability within the water supply network. The presented here new concept of disinfection assigns its new role and function in the integrated water distribution system. The controlling and diagnostic function of the disinfection defined in the paper provides a transparent and comprehensive method, with considerable application in experimental design, as well as practical solutions for integrated water distribution systems.
Go to article

Authors and Affiliations

Zbysław Dymaczewski
1
Joanna Jeż-Walkowiak
1
Michał Michałkiewicz
1
Marek M. Sozański
1
Aleksandra Makała
1

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations
Download PDF Download RIS Download Bibtex

Abstract

Single Frequency Networks (SFN) of transmitters are currently used in television and digital broadcasting to effectively cover large areas using minimal spectral resources and using transmitters with much lower power than if the same area were covered using one transmitter. It is therefore a very ecological solution. In this way, much better reception conditions are obtained in large city areas, as the signal reaches the receiving antenna from different directions, reducing the risk of shading. However, in this type of network one should take into account the loss of signal caused by signal interference. Using the appropriate propagation model, it is possible, with appropriate assumptions, to check how the operation of the third transmitter affects the distribution and size of the deepest fades in relation to the network in which there are two transmitters.

Go to article

Authors and Affiliations

Ryszard J. Z Ziielinski
Download PDF Download RIS Download Bibtex

Abstract

Prolonged exposure to stress may cause adverse effects on animal physiology. It is especially important during the gestation period as female physiology can affect the unborn offspring in the form of prenatal stress. Intensive pig farming industry developed gestation crates that enable to keep sows during gestation period in small stalls which do not allow animals to move freely for a maximum of 4 weeks after successful insemination (Council Directive 2008/120/EC). Although these crates have production advantages, many health and welfare issues have been raised recently. In this study we tested to what extent the lack of movement of sows kept in the gestation crates had an impact on some blood and saliva constituents of new-born piglets. In total, the samples were collected from 80 piglets when they were 3, 7 and 21 days of age and tested for cortisol levels in blood and saliva, acute phase proteins (amyloid A, C-reactive protein, haptoglobin) and lymphocytes proliferation index (in response to ConA, PHA and PWM). 40 piglets were from sows kept in free movement housing (FM group) from day 1 to day 100 of pregnancy and forty piglets were from sows in the movement restriction group (MR), in which the sows were kept in crates just allowing them to stand up and lie down from day 1 to day 100 of the pregnancy (research was conducted before the implementation Directive 2008/120/EC i.e. January 1,2013). The results of the study showed that the piglets delivered by sows kept under movement restriction conditions exhibited higher cortisol and acute phase protein levels as well as a lower lymphocytes proliferation index. This suggests that lack of movement in sows during the gestation period influences piglets’ physiology and indicates that the piglets are suffering from prenatal stress caused by insufficient housing conditions of their mothers potentially leading to poor health and welfare of their offspring.
Go to article

Authors and Affiliations

M. Kulok
1
K. Wojtas
2
M. Ciorga
3
Z. Pejsak
4
R. Kołacz
3

  1. Veterinary Clinic, Lisiny 33, 63-604 Baranów, Poland
  2. Compassion in World Farming International, River Court, Mill Lane, Godalming, Surrey GU7 1EZ, United Kingdom
  3. Nicolaus Copernicus University in Toruń, Institute of Veterinary Medicine, Gagarina 11, 87-100 Toruń, Poland
  4. University Centre of Veterinary Medicine, Mickiewicza 24/28, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Mountain soils derived from massive rocks were studied in the northwestern Wedel Jarlsberg Land. Main soil properties were examined for collected samples. Soils were classified as lithosols with common loamy and silty composition, and small amount of colloidal fraction. Soils were mostly alkaline due to high content of CaCO3. Much more organic substance occurred at westerly- than easterly-exposed hills and located close to a sea. Examined soils contained much soluble forms of Ca, Mg and occasionally Na, little of P and K. Density of plant cover corresponded to contents of organic substance.

Go to article

Authors and Affiliations

Zbigniew Klimowicz
Jerzy Melke
Stanisław Uziak
Download PDF Download RIS Download Bibtex

Abstract

The cyanobacteria bloom is one of typical manifestations of eutrophication, yet the effects of heavy metals entering water on cyanobacteria bloom remain unclear. In the present study, the effects of copper and zinc ions on the growth of Microcystic aeruginosa (M. aeruginosa) and the production of microcystins (MCs) were investigated. The results showed that a Cu2+ concentration of 0.02 mg/L stimulated the growth of M. aeruginosa, while growth inhibition occurred at a Cu2+ concentration of 0.1 mg/L. The maximum value of MC-LR (167.74 μg/L) occurred at a Cu2+ concentration of 0.02 mg/L. In contrast, a Zn2+ concentration of 0.1 mg/L stimulated the growth of M. aeruginosa, whereas growth inhibition was observed at a Zn2+ concentration of 0.5 mg/L. The maximum MC-LR value of 130 μg/L appeared under control conditions. Moreover, the production of MC-LR increased as the growth of M. aeruginosa was inhibited with a Cu2+ concentration of 0.1 mg/L, whereas the production of MC-LR decreased as the growth of M. aeruginosa was stimulated with a Zn2+ concentration of 0.1 mg/L, compared to their respective controls.
Go to article

Bibliography

  1. Admiraal, W., Tubbing, G.M.J. & Breebaart, L. (1995). Effects of phytoplankton on metal partitioning in the Lower River Rhine, Water Research, 29, 3, pp. 941-946. DOI:10.1016/0043-1354(94)00204-K.
  2. Ao, D., Lei, Z., Dzakpasu, M. & Chen, R. (2019). Role of divalent metals Cu2+ and Zn2+ in microcystis aeruginosa proliferation and production of toxic microcystins, Toxicon, 170, pp. 51-59. DOI:10.1016/j.toxicon.2019.09.012.
  3. Bishop, W.M., Willis, B.E. & Horton, C.T. (2015). Affinity and efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya Wollei Control in Lay Lake, AL, Environmental Management, 55, pp. 983-990. DOI:10.1007/s00267-014-0433-5.
  4. Brookes, J. D. & Carey, C.C. (2011). Resilience to blooms, Science, 334, 6052, pp. 46-47. DOI:10.1126/science.1207349.
  5. Bouron, A., Kiselyov, K. & Oberwinkler, J. (2015). Permeation, regulation and control of expression of TRP channels by trace metal ions, Pflügers Archiv- European Journal of Physiology, 467, pp. 1143-1164. DOI:10.1007/s00424-014-1590-3.
  6. Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A. İ., Özen, A., Jeppesen, E. & Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest turkish freshwater lake: Lake Beyşehir, Science of the Total Environment, 621, pp. 802-816. DOI:10.1016/j.scitotenv.2017.11.258.
  7. Cavet, J.S., Borrelly, G.P.M. & Robinson, N.J. (2003). Zn, Cu and Co in Cyanobacteria: selective control of metal availability, FEMS Microbiology Reviews, 27, (2-3), pp. 165-181. DOI:10.1016/S0168-6445(03)00050-0.
  8. Chakraborty, P., Babu, P.V.R., Acharyya, T. & Bandyopadhyay, B. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC, Chemosphere, 80, 5, pp. 548-553. DOI:10.1016/j.chemosphere.2010.04.039.
  9. Chen, Y., Yin, J., Wei, J. & Zhang, X. (2020) FurA-Dependent Microcystin Synthesis under Copper Stress in Microcystis aeruginosa, Microorganisms, 8, 832. DOI:10.3390/microorganisms806083.
  10. Dai, R., Wang, P., Jia, P., Zhang, Y., Chu, X. & Wang, Y. (2016). A review on factors affecting microcystins production by algae in aquatic environments, World Journal of Microbiology and Biotechnology, 32, 51. DOI:10.1007/s11274-015-2003-2.
  11. Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health, Archives of Industrial Hygiene and Toxicology, 64, 2, pp. 119-130, DOI:10.2478/10004-1254-64-2013-2320.
  12. Du, C., Li, G., Xia, R., Li, C., Zhu, Q., Li, X., Li, J., Zhao, C., Tian, Z. & Zhang, L. (2022). New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems, Environmental Pollution, 309, 119781, DOI:10.1016/j.envpol.2022.119781.
  13. Facey, J.A., Apte, S.C. & Mitrovic, S.M. (2019). A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production, Toxins, 11, 11, 643, DOI:10.3390/toxins11110643.
  14. Gangi, D., Plastani, M.S., Laprida, C. Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D. & Pinto, P.D.T. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63, pp. 195-209. DOI:10.1007/s10933-020-00110-8.
  15. Han, C., Machala, L., Medrik, I., Prucek, R., Kralchevska, R.P. & Dionysiou, D.D. (2017). Degradation of the cyanotoxin microcystin-lr using iron-based photocatalysts under visible light illumination, Environmental Science and Pollution Research, 24, pp. 19435-19443. DOI:10.1007/s11356-017-9566-4.
  16. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms, Nature Reviews Microbiology, 16, pp. 471-483. DOI:10.1038/s41579-018-0040-1
  17. Kormas, K.A.r., Gkelis, S., Vardaka, E. & Moustaka-Gouni, M. (2011). Morphological and molecular analysis of bloom-forming cyanobacteria in two eutrophic, shallow mediterranean lakes, Limnologica, 41, 3, pp. 167-173. DOI:10.1016/j.limno.2010.10.003.
  18. Krishnan, A., Koski, G. & Mou, X. (2020). Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells, Toxicon, 173, pp. 20-26. DOI:10.1016/j.toxicon.2019.11.003.
  19. Martínez-Ruiz, E.B. & Martínez-Jerónimo, F. (2016). How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis Aeruginosa exposed to nickel stress, Ecotoxicology and Environmental Safety, 133, pp. 36-46. DOI:10.1016/j.ecoenv.2016.06.040.
  20. Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino D. & McCarthy M. J. (2019). Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81, pp. 86-93. DOI:10.1016/j.hal.2018.11.003.
  21. Oberemm, A., Becker, J., Codd, G.A. & Steinberg, C. (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians, Environmental Toxicology, 14, 1, pp. 77-88. DOI:10.1002/(SICI)1522-7278(199902)14:1%3C77::AID-TOX11%3E3.0.CO;2-F
  22. Paerl, H.W. & Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial Ecology, 65, pp. 995-1010. DOI:10.1007/s00248-012-0159-y.
  23. Paerl, H.W, Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. & Gardner, W.S. (2011). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Research, 45, 5, pp. 1973-1983. DOI:10.1016/j.watres.2010.09.018.
  24. Polyak, Y., Zaytseva, T. & Medvedeva, N. (2013). Response of toxic cyanobacterium microcystis aeruginosa to environmental pollution, Water, Air, & Soil Pollution, 224, 4, 1494. DOI:10.1007/s11270-013-1494-4.
  25. Sevilla, E., Martin-Luna, B., Vela, L., Bes, M.T., Fillat, M.F. & Peleato, M.L. (2008). Iron availability affects McyD expression and microcystin-LR synthesis in Microcystis Aeruginosa PCC7806: iron starvation triggers microcystin synthesis, Environmental Microbiology, 10,10, pp. 2476-2483. DOI: 10.1111/j.1462-2920.2008.01663.x.
  26. Shen, F., Wang, L., Zhou, Q. & Huang. X., (2018). Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins, Aquatic Toxicology 196, pp. 9-16. DOI:10.1016/j.aquatox.2018.01.007.
  27. Svircev, Z., Drobac, D., Tokodi, N., Mijovic, B., Codd, G.A. & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 91 (2), pp. 621-650. DOI:10.1007/s00204-016-1921-6.
  28. Tsai, K. P. (2015). Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety, 120, pp. 428-435. DOI:10.1016/j.ecoenv.2015.06.024.
  29. Xu, H., McCarthy, M.J., Paerl, H.W., Brookes, J.D., Zhu, G., Hall, N.S., Qin, B., Zhang, Y., Zhu, M., Hampel, J. J., Newell, S.E. & Gardner, W.S. (2021). Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management, Limnology and Oceanography, 66, 4, pp. 1492-1509. DOI:10.1002/lno.11700.
  30. Zhou, H., Chen, X., Liu, X., Xuan, Y. & Hu, T. (2019). Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom, Water Environment Research, 91, pp. 21-31. DOI:10.2175/106143017X15131012188303.
  31. Zhou, S., Shao, Y., Gao, N., Deng, Y., Qiao, J., Ou, H. & Deng, J. (2013). Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis Aeruginosa, Science of the Total Environment, 463-464, pp. 111-119. DOI:10.1016/j.scitotenv.2013.05.064.
  32. Zhou, T., Wang, J., Zheng, H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R. & Liu, Y. (2018). characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina Platensis, Bioresource Technology, 269, pp. 285-291. DOI:10.1016/j.biortech.2018.08.131.
Go to article

Authors and Affiliations

Benjun Zhou
1
Weihao Xing
1

  1. School of Resources and Environmental Engineering, Hefei University of Technology, China
Download PDF Download RIS Download Bibtex

Abstract

Basing on Polish experience of about 5 years (since the presence of the African swine fever (ASF) in this country, starting from February 17th, 2014) and in accordance with literature the importance of the disease in wild boar is charaterised. ASF belongs to the most dangerous, very contagious diseases occurring in domestic swine and wild boar in Eurasia. In Europe, including Russia, Ukraine, Belarus, Lithuania, Latvia, Estonia, Poland, Romania, Hungary, Bulgaria, Czech Republic and Belgium ASF is existing at present and was diagnosed for short time in the frame of the Eurasian pandemy. There is a serious concern of spreading of the virus of ASF (ASFV) to other countries of Europe, not only by wild boar. However the reservoir of ASFV in this animal is playing a very important role in the maintenance of the virus and infection of pigs. Long lasting existence of ASFV in the environmnent is connected with the very high resistance to antiviral environmental factors. Following the lack of an effective immunogenic vaccine against ASF the disease can only be controlled by administrative measures. Additionally the important and recommended procedure is the significant reduction of the wild boar population. Probability of eradication of ASFV from wild boar is increased after adding quick carcass removal simultaneously by respecting biosecurity rules. If effectively implemented, fencing is more useful to delineating zones rather than adding substantially to increased efficiency of ASF control. However, segments of fencing will be particularly usefull in theses areas, where carcasses removal or intensive hunting is difficult to implement.

Go to article

Authors and Affiliations

Zygmunt Pejsak
Marian Truszczyński

This page uses 'cookies'. Learn more