Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Monitoring the stress change of bolt and knowing the anchoring condition in a reasonable and effective way, accurately, can effectively prevent tunnel accident from breaking out. The stress of rock mass around the roadway is usually transferred to the anchor rod in the form of axial load, so it is of great significance to study the axial load of the bolt. In this paper, a full size anchoring and drawing experiment system was designed and established, innovatively, which realized the pull-out test of 2.5 m prestressed end Anchorage and the full-length Anchorage by using the new resin anchorage agent under vertical and horizontal loads. Through the application of fiber Bragg grating (FBG) sensing technology to the test of full-scale anchor rod, the axial force distribution characteristics of the end Anchorage and the full-length Anchorage anchor rod were obtained under the action of pre-tightening torque and confining rock pressure. The comparison indicates that the proportion of high stress range accounts for only 17.5% and the main bearing range is near the thread end of anchor rod, the proportion of main bearing range of end Anchorage is 83.3%, and the feasibility of FBG force-measuring anchor rod is verified in the field. The research results have certain reference value.

Go to article

Authors and Affiliations

Tuo Wang
Jucai Chang
Peng Gong
ORCID: ORCID
Wenbao Shi
Ning Li
Shixing Cheng
Download PDF Download RIS Download Bibtex

Abstract

The analysis of mechanical behaviour of spinal column is until now still a challenge, in spite of the great amount of research which has been conducted over the last years. It is a particularly complex structure considering number of components, their shapes and mechanical characteristics. The objectives of the presented investigations are to understand the mechanisms of the mechanical behaviour of the spine structure and the role of its components, as well as the factors of its dysfunctions as scoliosis discopathy, spondylolisthesis. Also some mechanical effects of surgical interventions by total disc replacement is considered. To account for the 3D character of the spine system including vertebrae, discs, ligaments, muscles etc. the finite element method (FEM) formulation was used throughout the paper. Some specific features of the structure are included in the models as non-conservative loads and muscular tension control performed by the nervous system. The finite element method together with CAD programs and experimental validation was used in investigations of a new type of artificial disc for lumbar spine. The stress analyses were performed for the prostheses being in clinical use and for some original new designs. The conclusions concern most important determinants of the mechanical behaviour of the system and the quality of the intervertebral disc prosthesis.

Go to article

Authors and Affiliations

M. Dietrich
K. Kędzior
P. Borkowski
G. Krzesiński
K. Skalski
T. Zagrajek

This page uses 'cookies'. Learn more