Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nickel alloys, despite their good strength properties at high temperature, are characterized by limited weldability due to their susceptibility to hot cracking. So far, theories describing the causes of hot cracking have focused on the presence of impurities in the form of sulphur and phosphorus. These elements form low-melting eutectic mixtures that cause discontinuities, most frequently along solid solution grain boundaries, under the influence of welding deformations. Progress in metallurgy has effectively reduced the presence of sulphur and phosphorus compounds in the material, however, the phenomenon of hot cracking continues to be the main problem during the welding of nickel-based alloys. It was determined that nickel-based alloys, including Inconel 617, show a tendency towards hot cracking within the high-temperature brittleness range (HTBR). There is no information on any structural changes occurring in the HTBR. Moreover, the literature indicates no correlations between material-related factors connected with structural changes and the amount of energy delivered into the material during welding.

This article presents identification of correlations between these factors contributes to the exploration of the mechanism of hot cracking in solid-solution strengthened alloys with an addition of cobalt (e.g. Inconel 617). The article was ended with development of hot cracking model for Ni-Cr-Mo-Co alloys.

Go to article

Authors and Affiliations

J. Adamiec
N. Konieczna
Download PDF Download RIS Download Bibtex

Abstract

Measurements of hydrogen solubility in various nitrobenzene-aniline mixtures were conducted in an autoclave reactor with a stirrer and control of temperature. The solubility of hydrogen was measured at 7 different values of temperature (30 °C, 40 °C, 50 °C, 90 °C, 130 °C, 170 °C, 210 °C, respectively), 3 values of stirrer rotation speed (1200 rpm, 1600 rpm, 2000 rpm, respectively) and a range of pressure of 20 ‒ 30 bar. Moreover, pure aniline, pure nitrobenzene and their mixtures with different concentrations were used. In the next step, values of Henry’s constant were calculated. Based on experimental data a dependence of Henry’s constant on temperature for pure aniline and pure nitrobenzene was proposed. Additionally, for each temperature correlations between Henry’s constant and aniline’s concentration in mixture of nitrobenzene-aniline were found.

Go to article

Authors and Affiliations

Paweł Sobieszuk
Aleksandra Srebniak
Manfred Kraut
Oliver Görke

This page uses 'cookies'. Learn more