Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A numerical method is developed for estimating the acoustic power of any baffled planar structure, which is vibrating with arbitrary surface velocity profile. It is well known that this parameter may be calculated with good accuracy using near field data, in terms of an impedance matrix, which is generated by the discretization of the vibrating surface into a number of elementary radiators. Thus, the sound pressure field on the structure surface can be determined by a combination of the matrix and the volume velocity vector. Then, the sound power can be estimated through integration of the acoustic intensity over a closed surface. On the other hand, few works exist in which the calculation is done in the far field from near field data by the use of radiation matrices, possibly because the numerical integration becomes complicated and expensive due to large variations of directivity of the source. In this work a different approach is used, based in the so-called Propagating Matrix, which is useful for calculating the sound pressure of an arbitrary number of points into free space, and it can be employed to estimate the sound power by integrating over a finite number of pressure points over a hemispherical surface surrounding the vibrating structure. Through numerical analysis, the advantages/disadvantages of the current method are investigated, when compared with numerical methods based on near field data. A flexible rectangular baffled panel is considered, where the normal velocity profile is previously calculated using a commercial finite element software. However, the method can easily be extended to any arbitrary shape. Good results are obtained in the low frequency range showing high computational performance of the method. Moreover, strategies are proposed to improve the performance of the method in terms of both computational cost and speed.

Go to article

Authors and Affiliations

Mario A. González-Montenegro
Roberto Jordan
Arcanjo Lenzi
Jorge P. Arenas
Download PDF Download RIS Download Bibtex

Abstract

The paper presents definitions and relative measures of the system sensitivity and sensitivity of its errors. The model of a real system and model of an ideal measuring system were introduced. It allows to determine the errors of the system. The paper presents also how to use the error sensitivity analysis carried out on the models of the measuring system to the correction of the nonlinearity error of its static characteristic. The corrective function is determined as a relation between the input variable of the tested system and its chosen parameter. The use of the proposed method has been presented on the example of a phase angle modulator. The obtained results have been compared with the results of analytic calculations. The idea of a phase angle modulator is also presented.

Go to article

Authors and Affiliations

Ryszard Sroka
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the use of steel fibers and hybrid composite with a total fibers content of 2% on the high strength flowing concrete and determines the density, compressive strength, static modulus of elasticity, flexural strength and toughness indices for the mixes. The results show that the inclusion of more than 0.5% of palm fibers in hybrid fibers mixes reduces the compressive strength. The hybrid fibers can be considered as a promising concept and the replacement of a portion of steel fibers with palm fibers can significantly reduce the density, enhance the flexural strength and toughness. The results also indicates that the use of hybrid fibers (1.5 steel fibers + 0.5% palm fibers) in specimens increases significantly the toughness indices and thus the use of hybrid fibers combinations in reinforced concrete would enhance their flexural toughness & rigidity and enhance their overall performances.

Go to article

Authors and Affiliations

Eethar Thanon Dawood
Mahyuddin Ramli

This page uses 'cookies'. Learn more