Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study is a scientific justification for the hypothesis stating that the humanization of education contributes to developing a student’s personality as a subject of educational activity and helps master knowledge and skills that boost the development of professional skills. The study includes 300 cadets from the Ivan Kozhedub Kharkiv National Air Force University in their 1-4 years of study. The study determines the main pedagogical support components of professional and personal self-development of military students. In the survey, 86.6% of military students positively assessed their professional and personal self-development, although senior students (46.8%) demonstrated less interest in this regard. The study reveals that modern higher education needs further humanization so that future specialists endorse and share humanistic values; the humanization of training at the military university results in positive changes in all criteria of professional and personal self-development of military students. It is necessary to provide three stages in the integral process of professional training: the motivation and value-oriented stage; the cognitive and activity stage; the reflexive and transformative stage.
Go to article

Authors and Affiliations

Liudmyla Petrova
1
Olga Savchenko
1
Tetyana Bryk
1
Taisya Chernyshova
1
Mikhailo Trebin
2

  1. Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine
  2. Yaroslav Mudryi National Law University, Kharkiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The contamination of the environment by antibiotics has become a serious problem, supported by abundant scientific evidence of its negative impact on both aquatic ecosystems and human health. Therefore, it is crucial to intensify research efforts towards developing effective and efficient processes for removing antibiotics from the aquatic environment. In this study, a bacterial consortium capable of breaking down penicillin was employed in a ceramic separator microbial fuel cell (MFC) to generate electricity. The consortium’s properties such as laccase activity, penicillin removal and microbial structure were studied. The SF11 bacterial consortium, with a laccase activity of 6.16±0.04 U/mL, was found to be effective in breaking down penicillin. The highest rate of penicillin removal (92.15±0.27%) was achieved when the SF11 consortium was incubated at 30 °C for 48 hours. Furthermore, when used as a whole-cell biocatalyst in a low-cost upflow MFC, the Morganella morganii-rich SF11 consortium demonstrated the highest voltage and power density of 964.93±1.86 mV and 0.56±0.00 W/m3, respectively. These results suggest that the SF11 bacterial consortium has the potential for use in ceramic separator MFCs for the removal of penicillin and electricity generation.
Go to article

Bibliography

[1]. Ahilan, V., Bhowmick, G.D., Ghangrekar, M.M., Wilhelm, M. & Rezwan, K. (2019). Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell, Inonics, 25, pp. 5907-5918. DOI:10.1007/s11581-019-03083-5
[2]. Ajayi, F.F. & Weigele, P.R. (2012). A terracotta bio-battery, Bioresource Technology, 116, pp. 86-91. DOI:10.1016/j.biortech.2012.04.019
[3]. Al-Dhabi, N.A., Esmail, G.A. & Arasu, M.V. (2021). Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor, Chemosphere, 268, pp. 128726. DOI:10.1016/j.chemosphere.2020.128726
[4]. Ambika, A., Kumar, V., Jamwal, A., Kumar, V. & Singh, D. (2022). Green bioprocess for degradation of synthetic dyes mixture using consortium of laccase-producing bacteria from Himalayan niches, Journal of Environmental Management, 310, pp. 114764. DOI:10.1016/j.jenvman.2022.114764
[5]. Bhakta, J. & Munekage, Y. (2011). Mercury(II) Adsorption onto the magnesium oxide impregnated volcanic ash soil derived ceramic from aqueous phase, International Journal of Environmental Research, 5, pp. 585-594. DOI:10.22059/ijer.2011.365
[6]. Bhakta, J.N. & Munekage, Y. (2013). Identification of potential soil adsorbent for the removal of hazardous metals from aqueous phase, International Journal of Environmental Science and Technology, 10, pp. 315-324. DOI:10.1007/s13762-012-0116-9
[7]. Chaijak, P. & Michu, P. (2022). Modified water hyacinth biochar as a low-cost supercapacitor electrode for electricity generation from pharmaceutical wastewater, Polish Journal of Environmental Studies, 31, 6, pp. 5471-5475. DOI:10.15244/pjoes/150463
[8]. Chaijak, P. & Thipraksa, J. (2022). Improved performance of a novel-model laccase based microbial fuel cell (LB-MFC) with edible mushroom as a whole-cell biocatalyst, Polish Journal of Environmental Studies, 31, 5, pp. 4481-4485. DOI:10.15244/pjoes/147196
[9]. Chen, R., Zhang, Z., Feng, C., Lei, Z., Li, Y., Li, M., Shimizu, K. & Sugiura, N. (2010). Batch study of arsenate (V) adsorption using Akadama mud: Effect of water mineralization, Applied Surface Science, 256, 9, pp. 2961-2967. DOI:10.1016/j.apsusc.2009.11.058
[10]. Cheng, D., Ngo, H.H., Guo, W., Lee, D., Nghiem, D.L., Zhang, J., Liang, S., Varjani, S. & Wang, J. (2020). Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics, Bioresource Technology, 311, pp. 123588. DOI:10.1016/j.biortech.2020.123588
[11]. Copete-Pertuz, L.S., Placido, J., Serna-Galvis, E.A., Torres-Palma, R.A. & Mora, A. (2018). Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal, The Science of The Total Environment, 630, pp. 1195-1204. DOI:10.1016/j.scitotenv.2018.02.244
[12]. Das, I., Das, S., Dixit, R. & Ghangrekar, M.M. (2020). Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell, Ionics, 26, pp. 3061-3072. DOI:10.1007/s11581-020-03472-1
[13]. Ding, D., Lei, Z., Yang, Y. & Zhang, Z. (2014). Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions, Chemical Engineering Journal, 236, pp. 17-28. DOI:10.1016/j.cej.2013.09.075
[14]. Eliato, T.R., Pazuki, G. & Majidian, N. (2016). Potassium permanganate as an electron receiver in a microbial fuel cell, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 5, pp. 644-651. DOI:10.1080/15567036.2013.818079
[15]. Feng, L., Casas, M.E., Ottosen, L.D.M., Moller, H.B. & Bester, K. (2017). Removal of antibiotics during the anaerobic digestion of pig manure, Science of The Total Environment, 603-604, pp. 219-225. DOI:10.1016/j.scitotenv.2017.05.280
[16]. Garcia, D., Posadas, E., Grajeda, C., Blanco, S., Martinez-Paramo, S., Acien, G., Garcia-Encina, P., Bolado, S.  Munoz, R. (2017). Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions, Bioresource Technology, 245, pp. 483-490. DOI:10.1016/j.biortech.2017.08.135
[17]. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, pp. 122350. DOI:10.1016/j.biortech.2019.122350
[18]. Ghadge, A.N. & Ghangrekar, M.M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells, Electrochimica Acta, 166, 1, pp. 320-328. DOI:10.1016/j.electacta.2015.03.105
[19]. Ghadge, A.N., Jadhav, D.A. & Ghangrekar, M.M. (2016). Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications, Environmental Progress & Sustainable Energy, 35, 6, pp. 1809-1817. DOI:10.1002/ep.12403
[20]. Ghadge, A.N., Sreemannarayana, M., Duteanu, N. & Ghangrekar, M.M. (2014). Influence of ceramic separator’s characteristics on microbial fuel cell performance, Electrochemical Engineering, 4, 4, pp. 315-326. DOI:10.5599/jese.2014.0047
[21]. Ghasemi, M., Daud, W.R.W., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M. & Liew, K.B. (2013). Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, International Journal of Hydrogen Energy, 38, 13, pp. 5480-5484. DOI:10.1016/j.ijhydene.2012.09.148
[22]. Goto, Y. & Yoshida, N. (2019). Scaling up microbial fuel cells for treating swine wastewater. Water, 11, 9, pp. 1803. DOI:10.3390/w11091803
[23]. Guang, L., Koomson, D.A., Jingyu, H., Ewusi-Mensah, D. & Miwornunyuie, N. (2020). Performance of exoelectrogenic bacteria used in microbial desalination cell technology, International Journal of Environmental Research and Public Health, 17, 3, 1, pp. 1121. DOI:10.3390/ijerph17031121
[24]. He, L.Y., Ying, G.G., Liu, Y.S., Su, H.C., Chen, J., Liu, S.S. & Zhao, J.L. (2016). Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments, Environment International, 92-93, pp. 210-219. DOI:10.1016/j.envint.2016.03.023
[25]. Jahan, N., Tahmid, M., Shoronika, A.Z., Fariha, A., Roy, H., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). A comprehensive review on the sustainable treatment of textile wastewater: Zero liquid discharge and resource recovery perspectives, Sustainability, 14, pp. 15398. DOI:10.3390/su142215398
[26]. Ji, M., Su, X., Zhao, Y., Qi, W., Wang, Y., Chen, G. & Zhang, Z. (2015). Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism, Applied Surface Science, 344, pp. 128-136. DOI:10.1016/j.apsusc.2015.03.006
[27]. Kim, D.P., Saegerman, C., Douny, C., Dinh, T.V., Xuan, B.H., Vu, B.D., Hong, N.P. & Scippo, M.L. (2013). First survey on the use of antibiotics in pig and poultry production in the Red River Delta Region of Vietnam, Food and Public Health, 3, 5, pp. 247-256. DOI:10.5923/j.fph.20130305.03
[28]. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for bioelectricity generation of microbial fuel cells, Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
[29]. Kim, T., An, J., Jang, J.K. & Chang, I.S. (2020). Determination of optimum electricity connection mode for multi-electrode-embedded microbial fuel cells coupled with anaerobic digester for enhancement of swine wastewater treatment efficiency and electricity recover, Bioresource Technology, 297, pp. 122464. DOI:10.1016/j.biortech.2019.122464
[30]. Krasnikova, A.V. & Iozep, A.A. (2003). Structure of chemical compounds, Methods of analysis and process control, Pharmaceutical Chemistry Journal, 37, 9, pp. 504.
[31]. Kusada, H., Zhang, Y., Takami, H., Kimura, N. & Kamagata, Y. (2019). Novel N-Acyl Homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities, Frontiers in Microbiology, 10, pp. 445, 2019. DOI:10.3389/fmicb.2019.00455
[32]. Li, H., Xu, H., Yang, Y.L., Yang, X.L., Wu, Y., Zhang, S. & Song, H.L. (2019). Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland, Water Research, 165, pp. 114988. DOI:10.1016/j.watres.2019.114988
[33]. Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L. & Zhou, Y. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process, Journal of Environmental Science (China), 89, pp. 252-263. DOI:10.1016/j.jes.2019.08.015
[34]. Masse, D.I., Lu, D., Masse, L. & Droste, R.L. (2000). Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresource Technology, 75, 3, pp. 205-211. DOI:10.1016/S0960-8524(00)00046-8
[35]. Michu, P. & Chaijak, P. (2022). Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell, Communication in Science and Technology, 7, 1, pp. 98-102. DOI:10.21924/cst.7.1.2022.799
[36]. More, S.S., Renuka, P.S., Pruthvi, K., Swetha, M., Malini, S. & Veena, S.M. (2011). Isolation, purification, and characterization of fungal laccase from Pleurotus sp., Enzyme Research, 2011, pp. 248735. DOI:10.4061/2011/248735
[37]. Mukhopadhyay, D., Khan, N., Kamal, N., Varjani, S., Singh, S., Sindhu, R., Gupta, P. & Bhargava, P.C. (2022). Degradation of beta-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system, Bioresource Technology, 361, pp. 127605. DOI:10.1016/j.biortech.2022.127605
[38]. Nguyen, T.T., Soda, S., Kanayama, A. & Hamai, T. (2021). Effects of cattails and hydraulic loading on heavy metal removal from closed mine drainage by pilot-scale constructed wetlands, Water, 13, 14, pp. 1937. DOI:10.3390/w13141937
[39]. Ni, H., Wang, K., Lv, S., Wang, X., Zhuo, L. & Zhang, J. (2020). Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater, Energies, 13, 9, pp. 2231. DOI:10.3390/en13092231
[40]. Piontek, K., Antorini, M. & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers, Journal of Biological Chemistry, 277, 40, pp. 37663. DOI:10.1074/jbc.M204571200
[41]. Portis, E., Lindeman, C., Johansen, L. & Stoltman, G. (2012). A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada. Journal of Veterinary Diagnostic Investigation, 24, 5, pp. 932-944. DOI:10.1177/1040638712457559
[42]. Prosekov, A.Y.  Ivanova, S.A. (2018). Food security: The challenge of the present, Geoforum, 91, 1, pp. 73-77. DOI:10.1016/j.geoforum.2018.02.030
[43]. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54, 3, pp. 745-756. DOI:10.1016/j.aej.2015.03.031
[44]. Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy, 88, 11, pp. 3999-4004. DOI:10.1016/j.apenergy.2011.04.017
[45]. Rahman, T.U., Roy, H., Islam, M.R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). The advancement in membrane reactor (MBR) technology toward sustainable industrial wastewater management, Membranes, 13, pp. 181. DOI:10.3390/membranes13020181
[46]. Ren, B., Wang, T. & Zhao, Y. (2021). Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation, Chemoshpere, 268, pp. 128803. DOI:10.1016/j.chemosphere.2020.128803
[47]. Rossi, R., Jones, D., Myung, J., Zikmund, E., Yang, W., Gallego, Y.A., Pant, D., Evans, P.J., Page, M.A., Cropek, D.M. & Logan, B.E. Evaluating a multi-panel air cathode through electrochemical and biotic tests, Water Research, 148, pp. 51-59. DOI:10.1016/j.watres.2018.10.022
[48]. Santos, F., Almeida, C.M.R., Ribeiro, I. & Mucha, A.P. (2019). Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater, Ecological Engineering, 129, pp. 45-53. DOI:10.1016/j.ecoleng.2019.01.007
[49]. Shang, S., Fan, H., Li, Y., Li, L. & Li, Z. (2022). Preparation of lightweight ceramsite from solid waste using SiC as a foaming agent, Materials (Basel), 15, 1, pp. 325. DOI:10.3390/ma15010325
[50]. Sekyere, J.O. (2014). Antibiotic types and handling practices in disease management among pig farms in Ashanti region, Ghana, Journal of Veterinary Medicine, 2014, pp. 531952. DOI:10.1155/2014/531952
[51]. Subha, C., Kavitha, S., Abisheka, S., Tamilarasan, K., Arulazhagan, P. & Banu, J.R. (2019). Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell, Fuel, 251, pp. 224-232. DOI:10.1016/j.fuel.2019.04.052
[52]. Sun, W., Gu, J., Wang, X., Qian, X. &Peng, H. (2019). Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure, Bioresource Technology, 274, pp. 287-295. DOI:10.1016/j.biortech.2018.09.013
[53]. Sunder, A.V., Utari, P.D., Ramasamy, S., Van Merkerk, R., Quax, W. & Pundle, A. (2017). Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa, Applied Microbiology and Biotechnology, 101, 6, pp. 2383-2395. DOI:10.1007/s00253-016-8031-5
[54]. Thipraksa, J. & Chaijak, P. (2022). Improved the coconut shell biochar properties for bio-electricity generation of microbial fuel cells from synthetic wastewater, Journal of Degraded and Mining Lands Management, 9, 4, pp. 3613-3619.
[55]. Thipraksa, J., Chaijak, P., Michu, P. & Lertworapreecha, M. (2022). Biodegradation and electricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell, Biocatalysis and Agricultural Biotechnology, 43, pp. 102444. DOI:10.1016/j.bcab.2022.102444
[56]. Tsai, W.T. (2018). Regulatory promotion and benefit analysis of biogas-power and biogas-digestate from anaerobic digestion in Taiwan’s livestock industry, Fermentation, 4, 3, pp. DOI:10.3390/fermentation4030057
[57]. Vogel, G., Nicolet, J., Martig, J., Tschudi, P. & Meylan, M. (2001). Pneumonia in calves: characterization of the bacterial spectrum and the resistance patterns to antimicrobial drugs, Schweizer Archiv fur Tierheilkunde, 143, 7, pp. 341-350.
[58]. Wang, S., Ma, X., Wang, Y., Du, G. &Tay, J.H. (2019). Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresource Technology, 273, pp. 350-357. DOI:10.1016/j.biortech.2018.11.023
[59. Xu, F., Ouyang, D.L., Rene, E.R., Ng, H.Y., Guo, L.L., Zhu, Y.J., Zhou, L.L., Yuan, Q., Miao, M.S., Wang, Q. & Kong, Q. (2019). Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater, Bioresource Technology, 288, pp. 121462. DOI:10.1016/j.biortech.2019.121462
[60]. Yan, R., Wang, Y., Li, J., Wang, X. & Wang, Y. (2022). Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter, Journal of Hazardous Materials, 425, pp. 127764. DOI:10.1016/j.jhazmat.2021.127764
[61]. Yousefi, V., Mohebbi-Kalhori, D. & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42, 3, pp. 1672-1690. DOI:10.1016/j
.ijhydene.2016.06.054
[62]. Zhang, D., Wang, X.  Zhou, Z. (2017). Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. International Journal of Environmental Research and Public Health, 14, 12, pp. 1524. DOI:10.3390/ijerph14121524
[63]. Zhang, Y., Zhao, Y. & Zhou, M. (2019). A photosynthetic algal microbial fuel cell for treating swine wastewater, Environmental Science and Pollution Research, 26, 6182-6190. DOI:10.1007/s11356-018-3960-4

Go to article

Authors and Affiliations

Pimprapa Chaijak
1
ORCID: ORCID
Alisa Kongthong
1
ORCID: ORCID
Junjira Thipraksa
1
ORCID: ORCID
Panisa Michu
1
ORCID: ORCID

  1. Thaksin University, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The irrigation system control is identified as a complex hierarchical process of stochastic nature, at the head of which the uncertainties, caused by random variations of meteorological factors (climate) and diversion capacity regime from irrigation canals, were laid.

Under such conditions application of the determinate methods for irrigation system control regarding the effectiveness surrenders to the formalistic and empirical methods.

The most appropriate method is the developed by us, method of preventive control.

As a result of retrospective analysis, to each system status, for example, diversion capacity, it is fixed the factors which lead to its changes, for example, rain layer or total evaporation. To every consequence “factor – system status” it is fixed the indicator and it is determined the probability of its exceeding in retrospective series.

The control is in following of such indicator dynamics, forecasting of the most probably changes within system status and adjustment of the water delivery regime to canal reaches with diversion capacity regime from irrigation canals by means of standard preventive graphical chats of water flow control within hydraulic structures and pumping stations.

Use of such control method allows to minimize the uncertainty influence, also it does not require the major modifications in the design and engineering infrastructure.

As an exception can be the measures, directed to the increase of self-regulating qualities of irrigation systems, namely the ability of on-line water volume control, which is regulated in the idle capacities, provided in canal beds or special reservoirs.

The example of such decision in practice is the Kakhovskaya irrigation system in the South of Ukraine. The use factor of water resources on this system reaches 0.85, the technological discharge water does not exceed 7%, the deficit of productive moisture reserve in soil at the end of interirrigation period does not exceed 20% and all these data were obtained under adverse weather conditions.

Go to article

Authors and Affiliations

Peter Kovalenko
Yuri Mikhaylov
Download PDF Download RIS Download Bibtex

Abstract

Based on FAO data, the paper presents trends in nitrogen (N) input and output in Poland. As N input ( N inp), nitrogen from mineral fertilisers, manure application, biological fixation, and deposition was included. The N outputs ( N out) include the N contained in crop harvest (main products and by-products). The trend analyses were carried out for the period before (1961–1989) and after (1990–2018) the changes in the political and economic systems. Additionally, trends in the nitrogen use efficiency ( NUE) and nitrogen surpluses ( N S) are presented for these periods. In both compared periods, the mean values of N budget indicators in Poland were (kg N∙ha –1 UAA): N inp 120 and 125, N out 61 and 84, N S 60 and 41 and NUE 53 and 67%, respectively. The estimated Y max, which represents the N out value reached at saturating N fertilisation, reached the values of 127 and 263 kg N∙ha –1 UAA in these periods. The difference in these values suggests a significant impact of agronomy improvement on N out in the recent period. The trends of nitrogen within 16 regions in period 2002–2019, based on national data, resulted in a significant variation in N indicators. The values found were in the following ranges (kg N∙ha –1 UAA): N inp 78–167; N out 62–99; N S 15–83 and Y max 139–317. The NUE ranged from 50–81%. The obtained results indicate that in Poland and its regions there is still a need to improve of the nitrogen efficiency.
Go to article

Authors and Affiliations

Antoni Faber
1
Zuzanna Jarosz
1
Anna Jędrejek
1
Jerzy Kopiński
1

  1. Institute of Soil Science and Plant Cultivation – State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bills of Lading are transferable documents of title and the transfer of document results in the transfer of the rights incorporated in it. Some of B/L are additionally negotiable. However the legal meaning of these two terms isn’t the same what is not respected in practice. Historically there is also a difference in legal grounds and scope of rights represented and transferred by negotiable bills of lading according to British, American and continental law. An important role in this differentiation was played by the doctrine of privity of contract. This ultimately affects the legal position and scope of the acquired rights of legitimate holders of bills of lading, which are considered to be “negotiable”, including the right to obtain claims from the carrier for cargo damage.

Go to article

Authors and Affiliations

Maria Dragun-Gertner
Download PDF Download RIS Download Bibtex

Abstract

In the article I discuss Roger Scruton’s opposition between utopian optimism and anti- -utopian pessimism. I show how it connects with the concepts of politics of faith and politics of skepticism introduced by Michael Oakeshott. Then I explain the relationship between the attitude of skeptical moderation and philosophical realism.

Go to article

Authors and Affiliations

Damian Leszczyński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

A modification of the descriptor in a human detector using Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is presented. The proposed modification requires inserting the values of average cell brightness resulting in the increase of the descriptor length from 3780 to 3908 values, but it is easy to compute and instantly gives ≈ 25% improvement of the miss rate at 10‒4 False Positives Per Window (FPPW). The modification has been tested on two versions of HOG-based descriptors: the classic Dalal-Triggs and the modified one, where, instead of spatial Gaussian masks for blocks, an additional central cell has been used. The proposed modification is suitable for hardware implementations of HOG-based detectors, enabling an increase of the detection accuracy or resignation from the use of some hardware-unfriendly operations, such as a spatial Gaussian mask. The results of testing its influence on the brightness changes of test images are also presented. The descriptor may be used in sensor networks equipped with hardware acceleration of image processing to detect humans in the images.

Go to article

Authors and Affiliations

Marek Wójcikowski
Download PDF Download RIS Download Bibtex

Abstract

A system for precise angular laser beam deflection by using a plane mirror is presented. The mirror was fixed to two supports attached to its edges. This article details the theoretical basis of how this deflector works. The spring deflection of a flat circular metal plate under a uniform axial buckling was used and the mechanical stress was generated by a piezoelectric layer. The characteristics of the deformation of the plate versus the voltage control of the piezoelectrics were examined and the value of the change resolution possible to obtain was estimated. An experimental system is presented and an experiment performed to examine this system. As a result, a resolution of displacement of 10-8 rad and a range of 10-5 rad were obtained.

Go to article

Authors and Affiliations

Olga Iwasińska-Kowalska
Download PDF Download RIS Download Bibtex

Abstract

A metrical analysis of dodecasyllables used by Cassia (ninth century) and her contemporary poets.

Go to article

Authors and Affiliations

Katarzyna Warcaba
Download PDF Download RIS Download Bibtex

Abstract

The problem of optimal driving techniques during fuel economy competition is considered. The kinetic model of the record wheeled vehicle is proposed. It is regarded as a particle moving on a trace with variable slope angle. Engine characteristics are taken into account. The fuel consumption is minimized as the vehicle goes over a given distance. The problem is formulated in optimal control. The direct pseudospectral Chebyshev’s method is employed. The motion of student’s vehicle representing the Faculty of Power and Aeronautical Engineering during Shell Eco-marathon in Nogaro, France, in 2006, is used as an example.

Go to article

Authors and Affiliations

Krzysztof Rogowski
Ryszard Maroński

This page uses 'cookies'. Learn more