Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An evaluation method is developed for single blow experiments with liquids on heat exchangers. The method is based on the unity Mach number dispersion model. The evaluation of one experiment yields merely one equation for the two unknowns, the number of transfer units and the dispersive Peclet number. Calculations on an example confirm that one single blow test alone cannot provide reliable values of the unknowns. A second test with a liquid of differing heat capacity is required, or a tracer experiment for the measurement of the Peclet number. A modified method is developed for gases. One experiment yields the effective number of transfer units and approximate values of the two unknowns. The numerical evaluation of calculated experiments demonstrates the applicability of the evaluation methods.
Go to article

Authors and Affiliations

Wilfried Roetzel
Chakkrit Na Ranong
Download PDF Download RIS Download Bibtex

Abstract

A computational approach to analysis of wave propagation in plane stress problems is presented. The initial-boundary value problem is spatially approximated by the multi-node C⁰ displacement-based isoparametric quadrilateral finite elements. To integrate the element matrices the multi-node Gauss-Legendre-Lobatto quadrature rule is employed. The temporal discretization is carried out by the Newmark type algorithm reformulated to accommodate the structure of local element matrices. Numerical simulations are conducted for a T-shaped steel panel for different cases of initial excitation. For diagnostic purposes, the uniformly distributed loads subjected to an edge of the T-joint are found to be the most appropriate for design of ultrasonic devices for monitoring the structural element integrity.

Go to article

Authors and Affiliations

M. Rucka
J. Chróścielewski
W. Witkowski
K. Wilde
Download PDF Download RIS Download Bibtex

Abstract

The paper features a comprehensive approach to risk management worked out during the ValueSec project (EU 7th Framework Programme). The motivation for research was presented, along with the course of the research, achieved project results and validation results. The methodology of risk management and a supporting tool were developed as a result of the project. They help decision makers to make complex strategic decisions about security measures. These complex decision-related problems were the reason to launch the research. The elaborated methodology is based on three pillars: assessment of the considered security measure ability to reduce risk, costs and benefits analysis with respect to the security measure application, and analysis of legal, social, cultural, and other restrictions that might impair or even destroy the efficiency of the functioning measures. In the project these restrictions are called qualitative criteria. The main added value of the ValueSec project is the elaboration of a special software module to analyse impacts of qualitative criteria on the considered measure. Based on the methodology, a ValueSec Toolset prototype was developed. The prototype was then validated in the following application domains: mass event, railway transport security, airport and air transport security, protection against flood, and protection of smart grids against cyber-attacks.

Go to article

Authors and Affiliations

Andrzej Białas
Download PDF Download RIS Download Bibtex

Abstract

The mining in seams with a high methane content by means of a longwall system, under conditions of high extraction concentration, results in exceeding methane concentrations allowed by the regulations at workings of the longwall environment, with the effect of mining machines’ standstill periods. The paper is a part of a study supporting the development of a system for shearing cutting speed control at the longwall, which should substantially reduce the production standstills due to exceeded limits and switching off the supply of electric equipment. Such a control system may be appropriate for longwalls ventilated using “Y” and “short Y” methods. Efficient Computer simulations of the 3D airflow and methane propagation may assist the design and initial evaluation of the control system performance. First chapters present studies that are necessary for a proper formulation of the properties of the longwall model. Synthetic analysis of production during the period of longwall operation allowed one to choose the input assumptions to carry out ventilation-methane computations in a CFD numerical model of longwall Z-11. This study is followed by a description of the model that is used for a case study, considering three variants of the shearer position. Finally, initial simulation results and directions of further studies are discussed.
Go to article

Bibliography

[1] S. Prusek, E. Krause, J. Skiba, Designing coal panels in the conditions of associated methane and spontaneous fire hazards 30 ( 4), 525-531 (2020). DOI: https://doi.org/10.1016/j.ijmst.2020.05.015
[2] W. Dziurzyński, A. Krach, T. Pałka, Shearer control algorithm and identification of control parameters. Arch. Min. Sci. 63 (3), 537-552 (2018).
[3] W. Dziurzyński, A. Krach, J. Krawczyk, T. Pałka, Numerical Simulation of Shearer Operation in a Longwall District. Numerical Simulation of Shearer Operation in a Longwall District. Energies 13, 5559 (2020). DOI: https://doi.org/10.3390/en13215559
[4] E. Krause, A. Przystolik, B. Jura, Warunki bezpieczeństwa wentylacyjno-metanowego w ścianach o wysokiej koncentracji wydobycia. XXI Międzynarodowa Konferencja Naukowo-techniczna Górnicze Zagrożenia Naturalne. 6-8.11.2019 r., Jawor k. Bielska Białej.
[5] A. Walentek, T. Janoszek, S. Prusek, A. Wrana, Influence of longwall gateroad convergence on the process of mine ventilation network-model tests. International Journal of Mining Science and Technology 29, (4), 585-590 (2019).
[6] A. Juganda, J. Brune, G. Bogin, J. Grubb, S. Lolon, CFD modeling of longwall tailgate ventilation conditions. In: Proceedings of the 16th North American mine ventilation. Golden, CO; 2017.
[7] E. Krause, Z. Lubosik, Wpływ koncentracji wydobycia podczas eksploatacji pokładów silnie metanowych na wydzielanie się metanu do środowiska ścian. 9th International Symposium on Occupational Heat and Safety Petrosani Rumunia. October 3rd 2019 r.
[8] E. Krause, J. Skiba, B. Jura, Overview of Ventilation Characteristic, Practices and regulations in Poland. XXVIII Szkoła Eksploatacji Podziemnej, Kraków, 25-27.02.2019 r. https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/12._Krause_Skiba_Jura.pdf
[9] E. Krause, B. Jura, J. Skiba, Mining speed control in the coal panel with high coal output concentration. Kontrola prędkości urabiania w ścianach o wysokiej koncentracji wydobycia. Spotkanie Grupy Roboczej Ekspertów ds. metanu z kopalń Europejskiej Komisji Gospodarczej ONZ. Genewa 7-8.11.2019 r.
[10] J. Qin, Q. Qingdong, H. Guo, CFD simulations for longwall gas drainage design optimization. International Journal of Mining Science and Technology 27 (5), 777-782 (2017). DOI: https://doi.org/10.1016/j.ijmst.2017.07.012
[11] E. Krause, Ocena i zwalczanie zagrożenia metanowego w kopalniach węgla kamiennego. Prace Naukowe GIG nr 878. Katowice 2009.
[12] K .M. Tanguturi, R.S. Balusu, Computational fluid dynamics simulations for investigation of parameters affecting goaf gas distribution. Journal of Mining and Environment 9, 3, 547-557 (2018). DOI: https://doi.org/10.22044/jme.2018.5960.1410
[13] G . Xu, K.D. Luxbacher, S. Ragab, J. Xu, X. Ding, Computational fluid dynamics applied to mining engineering: a review. International Journal of Mining, Reclamation and Environment 31 (4), 251-275 (2017).
[14] Z . Wang, T. Ren, L. Ma, J. Zhang, Investigations of ventilation airflow characteristics on a longwall face – a computational approach. Energies 11, 1564 (2018). DOI: https://doi.org/10.3390/en11061564
[15] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results, Journal of Natural Gas Science and Engineering 43, 242-253 (2017).
[16] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part II: Parametric studies. Journal of Natural Gas Science and Engineering 43, 242-253 (2017).
[17] SolidWorks Flow Simulation 2012 Technical Reference. https://d2t1xqejof9utc.cloudfront.net/files/18565/SW_CFD_technical_reference.pdf?1361897013
Go to article

Authors and Affiliations

Tomasz Janoszek
1
ORCID: ORCID
Jerzy Krawczyk
2
ORCID: ORCID

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Strata Mechanics Research Institute, Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper the methodology of furnace exit gas temperature calculations by using well known normative standard method CKTI is presented. There are shown changes in methodology approach for three editions of it and in additional developments. Furnace exit gas temperature for two stoker grate boilers is calculated. By using described methods, it was possible to determine their effectiveness by comparing with measurements. Knowledge of the furnace exit gas temperature allows to define the division into irradiated and convection surfaces, which has an impact on the design features of the boiler as well as its dimensions and weight.
Go to article

Bibliography

[1] Kashnikov S.P., Tsygankov V.N.: Calculation of Boiler Units. In Examples and Problems. Gosenergoizdat, Moscow 1951 (in Russian).
[2] Kuznetsov N.V., Mitor V.V., Dubovsky I.E., Karasina E.S. (Eds.): Thermal Calculation of Boiler Units. Normative Method (2nd Edn.). Energia, Moscow 1973 (in Russian).
[3] Blokh A.G.: Heat Transfer in Steam Boiler Furnaces. Energoatomizdat, Moscow 1984 (in Russian).
[4] Blokh A.G.: Heat Transfer in Steam Boiler Furnaces, Springer Verlag, 1988.
[5] Kagan G.M.: Thermal Calculation of Boilers. Normative Method (3rd Edn.). NPO CKTI, Sankt-Peterburg 1998 (in Russian).
[6] Ye Weijie, Cheng Leming (Eds.): Thermal Calculation Method for Grate-Firing and Fluidized Bed Industrial Boiler, General Methods of Calculation and Design for Industrial Boiler. Standards Press, Bejing 2003 (in Chinese).
[7] Zhang Y.: Theory and Calculation of Heat Transfer in Furnaces. Elsevier, 2016.
[8] Kamenetskii B.Ya.: Applicability of the standard method for calculating heat transfer in furnaces with stokers. Therm. Eng. 53(2006), 2, 138–142.
[9] Kamenetskii B.Ya.: Calculation of heat transfer in boiler furnaces during firing of fuel in a bed. Therm. Eng. 55(2008), 5, 442–445.
[10] EN 12952-15. Water tube boilers and auxiliary installations – Part 15: Acceptance tests.
[11] EN ISO 9001:2015. Quality management systems – Requirements.
[12] EN ISO 14001:2015. Environmental management systems. Requirements with guidance for use.
[13] PN-N-18001:2004. Occupational health and safety management systems – Requirements
Go to article

Authors and Affiliations

Łukasz Rutkowski
1
Ireneusz Szczygieł
2

  1. Boilers Manufacturer SEFAKO S.A., Przemysłowa 9, 28-340 Sedziszów, Poland
  2. Silesian University of Technology Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of several years of studies concerning the role of penguin rookeries in the functioning of the land ecosystems in the maritime Antarctic are summarized. The origins of phosphatic ornithogenic soil in the areas of currently active penguin rookeries arc presented. In the maritime Antarctic occurs relatively fast microbiological decomposition and mineralization of large amounts of excrements carried into coastal area by penguins during breeding period. Chemically aggressive water solutions of guano react with underlaying rocks. This process brings about the occurrence of wide zones of phosphatization. These processes cause the appearance of the series of phosphate minerals whose composition and properties depend on the changing physical and chemical conditions of the soil environment. It has been discovered that in the rookeries for various reasons abandoned by penguins phosphates are still present in large amounts and, gradually changed and washed out, have been for hundreds, or even thousands years a source of nutrients for plants growing in poor Antarctic land ecosystems. These soils came to be called the relic ornithogenic soils of the maritime Antarctic. The stages of plant colonization in the abandoned penguin rookeries were traced. The differences in the fate of the organic matter carried out from the sea to the coastal area by sea-birds in various climatic zones were discussed.

Go to article

Authors and Affiliations

Andrzej Myrcha
Andrzej Tatur
Download PDF Download RIS Download Bibtex

Abstract

Many countries, including Indonesia, face severe water scarcity and groundwater depletion. Monitoring and evaluation of water resources need to be done. In addition, it is also necessary to improve the method of calculating water, which was initially based on a biophysical approach, replaced by a socio-ecological approach. Water yields were estimated using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. The Ordinary Least Square (OLS) and geographic weighted regression (GWR) methods were used to identify and analyze socio-ecological variables for changes in water yields. The purpose of this study was: (1) to analyze the spatial and temporal changes in water yield from 2000 to 2018 in the Citarum River Basin Unit (Citarum RBU) using the InVEST model, and (2) to identify socio-ecological variables as driving factors for changes in water yields using the OLS and GWR methods. The findings revealed the overall annual water yield decreased from 16.64 billion m3 year-1 in the year 2000 to 12.16 billion m3 year-1 in 2018; it was about 4.48 billion m3 (26.91%). The socio-ecological variables in water yields in the Citarum RBU show that climate and socio-economic characteristics contributed 6% and 44%, respectively. Land use/Land cover (LU/LC) and land configuration contribution fell by 20% and 40%, respectively.The main factors underlying the recent changes in water yields include average rainfall, pure dry agriculture, and bare land at 28.53%, 27.73%, and 15.08% for the biophysical model, while 30.28%, 23.77%, and 10.24% for the socio-ecological model, respectively. However, the social-ecological model demonstrated an increase in the contribution rate of climate and socio-economic factors and vice versa for the land use and landscape contribution rate. This circumstance demonstrates that the socio-ecological model is more comprehensive than the biophysical one for evaluating water scarcity.
Go to article

Bibliography

  1. Ambarwulan, W., Nahib, I., Widiatmaka, W., Suryanta, J., Munajati, S. L., Suwarno, Y., Turmudi T, Darmawan M. & Sutrisno, D. (2021). Using Geographic Information Systems and the Analytical Hierarchy Process for Delineating Erosion-Induced Land Degradation in the Middle Citarum Sub-Watershed, Indonesia. Frontiers in Environmental Science, 9, 710570. DOI:10.3389/fenvs.2021.71057
  2. Badan Informasi Geospasial. (2015). Pemetaan Dinamika Sumberdaya Alam Terpadu Wilayah Sungai Citarum; [Mapping of the Dynamics of Integrated Natural Resources of the Citarum River Basin]; Cibinong.
  3. Bai, Y., Chen, Y., Alatalo, J.M., Yang, Z. & Jiang, B. (2020). Scale Effects on the Relationships between Land Characteristics and Ecosystem Services- a Case Study in Taihu Lake Basin, China. Sci. Total Environ., 716, DOI:10.1016/j.scitotenv.2020.137083
  4. Balai Besar Wilayah Sungai Citarum-Ciliwung (BBWS Citarum Ciliwung). Profil BBWS Citarum [Profile of BBWS Citarum]. (http://sda.pu.go.id/balai/bbwscitarum/profil-bbws-citarum/) (09.03. 2022)
  5. Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A. & Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), pp. 1-14. DOI:10.1007/s13201-021-01545-8
  6. Barbieri, M., Barberio, M. D., Banzato, F., Billi, A., Boschetti, T., Franchini, S. & Petitta, M. (2021). Climate change and its effect on groundwater quality. Environmental Geochemistry and Health, 1-12. DOI:10.1007/s10653-021-01140-5
  7. Bin, L., Xu, K., Xu, X., Lian, J. & Ma, C. (2018). Development of a Landscape Indicator to Evaluate the Effect of Landscape Pattern on Surface Runoff in the Haihe River Basin. J. Hydrol, 566, pp. 546–557. DOI:10.1016/j.jhydrol.2018.09.045
  8. Borowski, P. F. (2020). Nexus between water, energy, food and climate change as challenges facing the modern global, European and Polish economy. AIMS Geosci, 6, pp. 397-421. DOI:10.3934/geosci.2020022
  9. Bucała-Hrabia, A. (2018). Land use changes and their catchment-scale environmenta limpact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geographia Polonica, 91(2), pp. 171-196. DOI:10.24425/aep.2022.140767
  10. Cao, S., Chen, L. & Yu, X. (2009). Impact of China's Grain for Green Project on the landscape of vulnerable arid and semi‐arid agricultural regions: A case study in northern Shaanxi Province. Journal of Applied Ecology, 46(3), pp. 536-543.
  11. Caraka, R. E., Chen, R. C., Bakar, S. A., Tahmid, M., Toharudin, T., Pardamean, B. & Huang, S. W. (2020). Employing best input SVR robust lost function with nature-inspired metaheuristics in wind speed energy forecasting. IAENG Int. J. Comput. Sci, 47(3), pp. 572-584.
  12. Chander, G., Markham, B. L. & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), pp. 893-903.
  13. Deslatte, A., Szmigiel-Rawska, K., Tavares, A. F., Ślawska, J., Karsznia, I. & Łukomska, J. (2022). Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland. Land Use Policy, 114, 105937. DOI:10.1016/j.landusepol.2021.105937
  14. Dinka, M. O. & Chaka, D. D. (2019). Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of water and land development. DOI:10.2478/jwld-2019-0038
  15. Dissanayake, D., Morimoto, T. & Ranagalage, M. (2019). Accessing the Soil Erosion Rate Based on RUSLE Model for Sustainable Land Use Management: A Case Study of the Kotmale Watershed, Sri Lanka. Springer International Publishing; Vol. 5, pp. 291–306. DOI:10.1007/s40808-018-0534-x
  16. Ermida, S.L., Patrícia Soares, Vasco Mantas, Frank-M. Göttsche & Isabel F. Trigo. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 12, 1471. DOI:10.3390/rs12091471
  17. Fang, W., Huang, H., Yang, B. & Hu, Q. (2021). Factors on spatial heterogeneity of the grain production capacity in the major grain sales area in southeast China: Evidence from 530 Counties in Guangdong Province. Land, 10(2), 206. DOI:10.3390/land10020206
  18. Ferencz, B., Dawidek, J., & Bronowicka-Mielniczuk, U. (2022). Alteration of yield and springs number as an indicator of climate changes. Case study of Eastern Poland. Ecological Indicators, 138, 108798.
  19. Figueroa, A.J. & Smilovic, M. (2020). Groundwater irrigation and implication in the Nile river basin. In Global Groundwater (pp. 81-95). Elsevier. DOI:10.1016/B978-0-12-818172-0.00007-4
  20. Fotheringham, A.S., Brunsdon, C. & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; ISBN 978-0-470-85525-6.
  21. Francis, R. & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability engineering & system safety, 121, pp. 90-103.
  22. Fu, B.P. (1981). On the Calculation of the Evaporation from Land Surface. Sci. Atmos. Sin.
  23. Gentilucci, M., Bufalini, M., Materazzi, M., Barbieri, M., Aringoli, D., Farabollini, P. & Pambianchi, G. (2021). Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy. Geosci, 11, DOI:10.3390/geosciences11080348
  24. Glaser, M., Krause, G., Ratter, B. & Welp, M. (2008) Human-Nature-Interaction in the Anthropocene. Potential of Social-Ecological Systems Analysis. [Website], Available from: file:///C:/Users/USER/Downloads/10.4324_9780203123195_previewpdf.pdf
  25. (28.07.2022) DOI:10.1111/j.1365-2664.2008.01605.x
  26. Goldameir, N. E., Djuraidah, A. & Wigena, A. H. (2015). Quantile Spline Regression on Statistical Downscaling Model to Predict Extreme Rainfall in Indramayu. Applied Mathematical Sciences, 9(126), pp. 6263-6272.
  27. Gollini, I., Lu, B., Charlton, M., Brunsdon, C., Harris, P., Gollini, I., Lu, B., Charlton, M., Brunsdon, C. & Harris, P. (2015). GWmodel : An R Package for Exploring Spatial Heterogeneity. J. Stat. Softw, 63, pp. 1–50, DOI:10.1080/10095020.2014.917453
  28. Gosal, A. S., Evans, P. M., Bullock, J. M., Redhead, J., Charlton, M. B., Cord, A. F. Johnson, A. & Ziv, G. (2022). Understanding the accuracy of modelled changes in freshwater provision over time. Science of the Total Environment, 833, 155042. DOI:10.1016/j.scitotenv.2022.155042
  29. Gwate, O., Dube, H., Sibanda, M., Dube, T., Chisadza, B. & Nyikadzino, B. (2022). Understanding the influence of land cover change and landscape pattern change on evapotranspiration variations in Gwayi catchment of Zimbabwe. Geocarto International, 1-17. DOI:10.1080/10106049.2022.2032386
  30. Hamel, P. & Guswa, A.J. (2015). Uncertainty Analysis of a Spatially Explicit Annual Water-Balance Model: Case Study of the Cape Fear Basin, North Carolina. Hydrol. Earth Syst. Sci, 19, pp. 839–853. DOI:10.5194/hess-19-839-2015
  31. Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos. Transactions American Geophysical Union, 14(1), pp. 446-460.
  32. Hasan, M. (2011). A policy model for sustainable water resources management of Citarum River Basin. Disertasi. Sekolahg pasca Sarjana IPb. http://repository.ipb.ac.id/handle/123456789/53626
  33. Hu, W., Li, G., Gao, Z., Jia, G., Wang, Z. & Li, Y. (2020). Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Science of the Total Environment, 733, 139423. DOI:10.1016/j.scitotenv.2020.139423
  34. Kementerian Pekerjaan Umum. Rencana pengelolaan sumber daya air Wilayah Sungai Citarum Tahun 2016 [Management Plan of Citarum River Basin]. Available online: https://www.coursehero.com/file/60545948/Rencana-Pengelolaan-Sumber-Daya-Air-WS-Citarumpdf/ (12.03.2022).
  35. Kubiak-Wójcicka, K. & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geosciences, 10(8), 312. DOI:10.3390/geosciences10080312
  36. Łabędzki, L. & Bąk, B. (2017). Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. Journal of Water and Land Development, 34(1), 181. DOI: 10.1515/jwld-2017-0052
  37. Li, P., Li, H., Yang, G., Zhang, Q. & Diao, Y. (2018). Assessing the hydrologic impacts of land use change in the Taihu Lake Basin of China from 1985 to 2010. Water, 10(11), 1512. DOI:10.3390/w10111512
  38. Li, Y., Sun, Y., Li, J. & Gao, C. (2020). Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustainable Cities and Society, 63, 102425. DOI: 10.1016/j.scs.2020.102425
  39. Lian, X. H., Qi, Y., Wang, H. W., Zhang, J. L. & Yang, R. (2019). Assessing changes of water yield in Qinghai Lake Watershed of China. Water, 12(1), 11. DOI: 10.3390/w12010011
  40. Montazar, A., Krueger, R., Corwin, D., Pourreza, A., Little, C., Rios, S. & Snyder, R.L. (2020). Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water (Switzerland), 12, DOI:10.3390/w12082253
  41. Muhammed, H. H., Mustafa, A. M. & Kolerski, T. (2021). Hydrological responses to large-scale changes in land cover of river watershed. Journal of Water and Land Development, (50). DOI:10.24425/jwld.2021.138166
  42. Nahib, I., Ambarwulan, W., Rahadiati, A., Munajati, S.L., Prihanto, Y., Suryanta, J., Turmudi, T. Nuswantoro, A.C (2021). Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustain. 13, DOI:10.3390/su13073919
  43. Nahib, I., Amhar, F., Wahyudin, Y., Ambarwulan, W., Suwarno, Y., Suwedi, N., Turmudi T, Cahyana. D., Nugroho, N.P.,Ramadhani, F., Siagian, D.R., Suryanta, J., Rudiastuti. A.W., Lumban-Gaol, Y., Karolinoerita, V., Rifaie. F. & Munawaroh, M. (2023). Spatial-Temporal Changes in Water Supply and Demand in the Citarum Watershed, West Java, Indonesia Using a Geospatial Approach. Sustainability, 15(1), 562. DOI:10.3390/su15010562
  44. Nie, Y., Avraamidou, S., Xiao, X., Pistikopoulos, E. N., Li, J., Zeng, Y. Song, F. Yu, J. & Zhu, M. (2019). A Food-Energy-Water Nexus approach for land use optimization. Science of The Total Environment, 659, pp.7-19. DOI: 10.1016/j.scitotenv.2018.12.242
  45. Pei, H., Liu, M., Shen, Y., Xu, K., Zhang, H., Li, Y. & Luo, J. (2022). Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of The Total Environment, 809, p.151153. DOI:10.1016/j.scitotenv.2021.151153
  46. Pokhrel, Y. N., Koirala, S., Yeh, P. J. F., Hanasaki, N., Longuevergne, L., Kanae, S. & Oki, T. (2015). Incorporation of groundwater pumping in a global L and Surface Model with the representation of human impacts. Water Resources Research, 51(1), pp. 78-96. DOI:10.1002/2014WR015602
  47. Redhead, J. W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T.H. & Bullock, J. M. (2016). Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of the Total Environment, 569, pp. 1418-1426. DOI:10.1016/j.scitotenv.2016.06.227
  48. Rouholahnejad Freund, E., Abbaspour, K. C. & Lehmann, A. (2017). Water resources of the Black Sea catchment under future climate and landuse change projections. Water, 9(8), 598.
  49. Sawicka, B., Barbaś, P., Pszczółkowski, P., Skiba, D., Yeganehpoor, F. & Krochmal-Marczak, B. (2022). Climate Changes in Southeastern Poland and Food Security. Climate, 10(4), 57. DOI:10.3390/cli10040057
  50. Saxton, K.E. (2009) Soil Water Characteristics: Hydraulic Properties Calculator. Available online: https://hrsl.ba.ars.usda.gov/soilwater/Index.htm (13.02.2022)
  51. Scown, M. W., Flotemersch, J. E., Spanbauer, T. L., Eason, T., Garmestani, A. & Chaffin, B. C. (2017). People and water: Exploring the social-ecological condition of watersheds of the United States. Elementa: Science of the Anthropocene, 5. DOI:10.1525/elementa.189
  52. Septiangga, B. & Juniar, R. 2016. Aplikasi citra Landsat 8 untuk penentuan persebaran titik panas sebagai indikasi peningkatan temperatur Kota Yogyakarta. Conference paper on National Meteorologi and Climatologi, Jakarta, Indonesia, March 2016
  53. Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R. & Bierbower, W. (2015). INVEST 3.1.3 User’s Guide; California US, https://invest-userguide.readthedocs.io/en/3.5.0/ (12.08.2021)
  54. Sholeh, M., Pranoto, P., Budiastuti, S. & Sutarno, S. (2018). Analysis of Citarum River Pollution Indicator Using Chemical, Physical, and Bacteriological Methods; Vol. 2049;. In AIP Conference Proceedings (Vol. 2049, No. 1, p. 020068). AIP Publishing LLC. DOI:10.1063/1.5082473
  55. Siswanto, S.Y. & Francés, F. (2019). How Land Use/Land Cover Changes Can Affect Water, Flooding and Sedimentation in a Tropical Watershed: A Case Study Using Distributed Modeling in the Upper Citarum Watershed, Indonesia. Environ. Earth Sci. 78, pp. 1–15. DOI:10.1007/s12665-019-8561-0
  56. Sriyanti, M. G. Indonesia Climate Change Sectoral Roadmap-ICCSR (Synthesis Report). FAO. 2009. 9789793764498. Jakarta: Badan Perencanaan Pembangunan Nasional, 2010
  57. Sun, Y.-J. Wang, J.-F., Zhang, R.-H., Gillies, R. R., Xue, Y. & Bo. Y.-C.(2015). Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology. 80, pp. 37–48. DOI:10.1007/s00704-004-0079-y
  58. Sun, X.Y., Guo, H.W., Lian, L., Liu, F. & Li, B. (2017). The Spatial Pattern of Water Yield and Its Driving Factors in Nansi Lake Basin. J. Nat. Resour, 32, pp. 669–679. DOI:10.11849/zrzyxb.20160460
  59. Suroso, D., Setiawan, B. & Abdurahman, O. (2010). Impact of Climate Change on the Sustainability of Water Supply in Indonesia and The 714 Proposed Adaptation Activities. Int. Symp. Exhib. Short Course Geotech. Geosynth. Eng. Challenges Oppor. Clim. Chang. 2010
  60. Szarek-Gwiazda, E. & Gwiazda, R. (2022). Impact of flow and damming on water quality of the mountain Raba River (southern Poland)‒long-term studies. Archives of Environmental Protection, 48(1), pp. 31-40. DOI:10.24425/aep.2022.140543
  61. Szwagrzyk, M., Kaim, D., Price, B., Wypych, A., Grabska, E. & Kozak, J. (2018). Impact of forecasted land use changes on flood risk in the Polish Carpathians. Natural Hazards, 94(1), pp. 227-240. DOI:10.1007/s11069-018-3384-y
  62. Szwed, M., Karg, G., Pińskwar, I., Radziejewski, M., Graczyk, D., Kędziora, A. & Kundzewicz, Z. W. (2010). Climate change and its effect on agriculture, water resources and human health sectors in Poland. Natural Hazards and Earth System Sciences, 10(8), pp. 1725-1737. DOI:10.5194/nhess-10-1725-2010, 2010.
  63. Van Paddenburg, A., Bassi, A., Buter, E., Cosslett, C. & Dean, A. A. (2012). Heart of Borneo: Investing in Nature for a Green Economy: A Synthesis Report;
  64. Wang, C., Du, S., Wen, J., Zhang, M., Gu, H., Shi, Y. & Xu, H. (2017). Analyzing Explanatory Factors of Urban Pluvial Floods in Shanghai Using Geographically Weighted Regression. Stoch. Environ. Res. Risk Assess, 31, DOI:10.1007/s00477-016-1242-6 Water 2020, 12, 11.
  65. Wei, P., Chen, S., Wu, M., Deng, Y., Xu, H., Jia, Y. & Liu, F. (2021). Using the Invest Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water (Switzerland), 13. DOI:10.3390/w13091250
  66. Worldmeter. Indonesia Water https://www.worldometers.info/water/indonesia-water/#water-use (26.05.2022)
  67. WWAP (World Water Assessment Programme). 2021. World Water Development Report Volume 4: Managing Water under Uncertainty and Risk; 2012; Vol. 1.
  68. Xu, J., Liu, S., Zhao, S., Wu, X., Hou, X., An, Y. & Shen, Z. (2019). Spatiotemporal dynamics of water yield service and its response to urbanisation in the Beiyun river Basin, Beijing. Sustainability, 11(16), 4361.
  69. Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. (2021). Spatiotemporal Changes in Vegetation Cover and Its Influencing Factors in the Loess Plateau of China Based on the Geographically Weighted Regression Model. Forests, 12. DOI:10.3390/f12060673
  70. Yang, X., Chen, R., Meadows, M.E., Ji, G. & Xu, J. (2020). Modelling Water Yield with the InVEST Model in a Data Scarce Region of Northwest China. Water Sci. Technol. Water Supply, 20, pp. 1035–1045, DOI:10.2166/ws.2020.026
  71. Young, M. & Esau, C. (Eds.). (2015). Investing in water for a green economy: Services, infrastructure, policies and management. Routledge.
  72. Yudistiro, Kusratmoko, E. & Semedi, J.M. (2019). Water Availability in Patuha Mountain Region Using InVEST Model “Hydropower Water Yield.” In Proceedings of the E3S Web of Conferences; Vol. 125. DOI:10.1051/e3sconf/2019125010
  73. Zhang, L., Hickel, K., Dawes, W.R., Chiew, F.H.S., Western, A.W. & Briggs, P.R. (2004). A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res, 40, pp. 1–14, DOI:10.1029/2003WR002710
  74. Zhang, X., Zhang, G., Long, X., Zhang, Q., Liu, D., Wu, H. & Li, S. (2021). Identifying the Drivers of Water Yield Ecosystem Service: A Case Study in the Yangtze River Basin, China. Ecol. Indic, 132. DOI:10.1016/j.ecolind.2021.108304
  75. Zemełka, G., Kryłów, M. & Szalińska van Overdijk, E. (2019). The potential impact of land use changes on heavy metal contamination in the drinking water reservoir catchment (Dobczyce Reservoir, south Poland). Archives of Environmental Protection, 45(2), pp.3-11. DOI:10.24425/aep.2019.127975 ;
  76. Ziexin, H. (2020). Impact of spatial land use change on green space and water yield in Batu Pahat, Johor (Doctoral dissertation, Universiti Malaysia Kelantan).
Go to article

Authors and Affiliations

Irmadi Nahib
1
ORCID: ORCID
Wiwin Ambarwulan
1
ORCID: ORCID
Dewayany Sutrisno
1
ORCID: ORCID
Mulyanto Darmawan
1
Yatin Suwarno
1
Ati Rahadiati
1
Jaka Suryanta
1
ORCID: ORCID
Yosef Prihanto
1
Aninda W. Rudiastuti
1
Yustisi Lumban Gaol
1

  1. Research Center for Geospatial, Research Organization for Earth Sciences and Maritime,National Research and Innovation Agency, Cibinong Science Center,Jl. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of a detailed study of the geological structure of the Łeba Barrier in the Rąbka cross-section (Southern Baltic, Poland). The barrier separates Lake Łebsko from the Baltic. Five sedimentary complexes were distinguished there (M2-M6). The spatial variability of the grain-size distribution was examined and succession stages of the mollusc fauna occurring in the individual sedimentary complexes were distinguished. Radiocarbon dating was used to establish the age of the most important events during the process of formation of the barrier, which took place in the course of several relative sea-level changes. The first sedimentary complex (M2) at Rąbka is connected with the second ingression (i2) of the Baltic Sea (ca. 6,700-6,000 14C years BP), sea-level stabilization (6,000-5,500 14C years BP), and at last sea-level lowering (5,500-5,000 14C years BP) in the region of the Gardno-Łeba Coastal Plain. The sedimentary complex M3 developed in a lagoonal environment when the barrier was situated north of its present position (5,000-3,000 14C BP). The next lowering of the sea-level made the lagoon shallower and caused the emergence of small but already subaerial stretches of barrier land with a freshwater fauna in the north (4,880š40 14C BP). With the next ingression stage (i3), which took place between 4,500 and 3,000 BP, the barrier shifted to its present-day position and the lagoon changed into a freshwater lake. From 3,000 to 1,700 14C BP fossil soil and peats developed on the barrier surface as a result of another sea-level lowering. The last ingression stages (i4 and i5), younger than 1,700 BP, built up the barrier, practically in its today's location (sedimentary complexes M4 and M5). The youngest sedimentary complex (M-6) is represented by present-day beach sands.

Go to article

Authors and Affiliations

Karol Rotnicki
Stefan W. Alexandrowicz
Anna Pazdur
Tomasz Goslar
Ryszard K. Borówka
Download PDF Download RIS Download Bibtex

Abstract

The assemblage of lacustrine ostracods found in the Eemian Interglacial sediments at Kruklanki (Masurian Lake District, northeastern Poland) contains 18 species belonging to 13 genera. The most dominant species are Candona neglecta Sars, 1887, Limnocytherina sanctipatricii (Brady et Robertson, 1869), Limnocythere inopinala (Baird, 1843) and Candona candida (O.F. Muller, 1776). Cyclocypris serena (Koch, 1838), llyocypris decipiens Masi, 1905, Pseudocandona insculpta (G.W. Muller, 1900) and Leucocythere mirabilis Kaufmann, 1892 are recorded for the first time from the Eemian of Poland; the latter two species are also new for the Eemian lacustrine deposits of Europe. The ecological requirements of the recognised ostracod species as well as their geographic ranges in the Quaternary of Europe are summarised. Based on these data, past habitat type is estimated as a deeper littoral of a lake with reasonably cold, well-oxygenated and calcium-rich waters. The present state of knowledge of the Eemian ostracods from Poland is reviewed and their comparison with the Eemian ostracod assemblages from Europe is briefly given. Comparison of the ostracod fauna! assemblage from Kruklanki with those from other Eemian sites in Poland enables to establish and describe one general type of ostracod assemblages characteristic for lacustrine littoral in this interglacial.
Go to article

Authors and Affiliations

Tadeusz Namiotko
Janina Szczechura
Lucyna Namiotko

This page uses 'cookies'. Learn more