Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents "-approximation of hydrodynamics equations’ stationary model along with the proof of a theorem about existence of a hydrodynamics equations’ strongly generalized solution. It was proved by a theorem on the existence of uniqueness of the hydrodynamics equations’ temperature model’s solution, taking into account energy dissipation. There was implemented the Galerkin method to study the Navier–Stokes equations, which provides the study of the boundary value problems correctness for an incompressible viscous flow both numerically and analytically. Approximations of stationary and non-stationary models of the hydrodynamics equations were constructed by a system of Cauchy–Kovalevsky equations with a small parameter ". There was developed an algorithm for numerical modelling of the Navier– Stokes equations by the finite difference method.
Go to article

Bibliography

[1] C. Conca: On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Purs at Appl., 64(1), (1985), 31–35.
[2] M.R. Malik, T.A. Zang, and M.Y. Hussaini:Aspectral collocation method for the Navier–Stokes equations. J. Comput. Phys., 61(1), (1985), 64–68.
[3] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, Palo Alto, Calif., (1991), 413-453.
[4] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier–Stokes equations. J. Phys. Commun., 3(10), (2019), 13– 18, DOI: 10.1088/2399-6528/ab4b86.
[5] S.Sh. Kazhikenova, S.N. Shaltakov, D. Belomestny, and G.S. Shai- hova: Finite difference method implementation for numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17(1), (2020), 50–56.
[6] O.A. Ladijenskaya: Boundary Value Problems of Mathematical Physics. Nauka, Moscow, 1973.
[7] Z.R. Safarova: On a finding the coefficient of one nonlinear wave equation in the mixed problem. Archives of Control Sciences, 30(2), (2020), 199–212, DOI: 10.24425/acs.2020.133497.
[8] A. Abramov and L.F. Yukhno: Solving some problems for systems of linear ordinary differential equations with redundant conditions. Comput. Math. and Math. Phys., 57 (2017), 1285–1293, DOI: 10.7868/ S0044466917080026.
[9] K. Yasumasa and T. Takahico: Finite-element method for three-dimensional incompressible viscous flow using simultaneous relaxation of velocity and Bernoulli function. 1st report flow in a lid-driven cubic cavity at Re = 5000. Trans. Jap. Soc. Mech. Eng., 57(540), (1991), 2640–2647.
[10] H. Itsuro, Î. Hideki, T. Yuji, and N. Tetsuji: Numerical analysis of a flow in a three-dimensional cubic cavity. Trans. Jap. Soc. Mech. Eng., 57(540), (1991), 2627–2631.
[11] X. Yan, L. Wei, Y. Lei, X. Xue, Y.Wang, G. Zhao, J. Li, and X. Qingyan: Numerical simulation of Meso-Micro structure in Ni-based superalloy during liquid metal cooling. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering. The Minerals, Metals & Materials Series. Ð. 249–259, DOI: 10.1007/978-3-319-57864-4_23.
[12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact Solutions of the nonliear equation. Ukrains’kyi Matematychnyi Zhurnal, 69(9), (2017), 1180–1186, http://umj.imath.kiev.ua/index.php/umj/article/view/1768.
[13] S. Tleugabulov, D. Ryzhonkov, N. Aytbayev, G. Koishina, and G. Sul- tamurat: The reduction smelting of metal-containing industrial wastes. News of the Academy of Sciences of the Republic of Kazakhstan, 1(433), (2019), 32–37, DOI: 10.32014/2019.2518-170X.3.
[14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr–Sommerfeld-type problem for analysis of instability of ocean currents. Zh. Vychisl. Mat. Mat. Fiz., 58(6), (2018), 1022–1039, DOI: 10.7868/S0044466918060133.
[15] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations. Ukrains’kyi Matematychnyi Zhurnal, 71(9), (2019), 1176–1191, http://umj.imath.kiev.ua/index.php/ umj/article/view/1508.
[16] S.Sh. Kazhikenova, M.I. Ramazanov, and A.A. Khairkulova: epsilon- Approximation of the temperatures model of inhomogeneous melts with allowance for energy dissipation. Bulletin of the Karaganda University- Mathematics, 90(2), (2018), 93–100, DOI: 10.31489/2018M2/93-100.
[17] J.A. Iskenderova and Sh. Smagulov: The Cauchy problem for the equations of a viscous heat-conducting gas with degenerate density. Comput. Maths Math. Phys. Great Britain, 33(8), (1993), 1109–1117.
[18] A.M. Molchanov: Numerical Methods for Solving the Navier–Stokes Equations. Moscow, 2018.
[19] Y. Achdou and J.-L. Guermond: Convergence Analysis of a finite element projection / Lagrange-Galerkin method for the incompressible Navier–Stokes equations. SIAM Journal of Numerical Analysis, 37 (2000), 799–826.
[20] M.P. de Carvalho, V.L. Scalon, and A. Padilha: Analysis of CBS numerical algorithm execution to flow simulation using the finite element method. Ingeniare Revista chilena de Ingeniería, 17(2), (2009), 166–174, DOI: 10.4067/S0718-33052009000200005.
[21] G. Muratova, T. Martynova, E. Andreeva, V. Bavin, and Z-Q. Wang: Numerical solution of the Navier–Stokes equations using multigrid methods with HSS-based and STS-based smoother. Symmetry, 12(2), (2020), DOI: 10.3390/sym12020233.
[22] M. Rosenfeld and M. Israeli: Numerical solution of incompressible flows by a marching multigrid nonlinear method. AIAA 7th Comput. Fluid Dyn. Conf.: Collect. Techn. Pap., New-York, (1985), 108–116.92.


Go to article

Authors and Affiliations

Saule Sh. Kazhikenova
1
ORCID: ORCID

  1. Head of the Department of Higher Mathematics, Karaganda Technical University, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

In 1979 54 water samples were collected at two oceanographic stations located in Admiralty Bay. Ranges of seasonal changes were found for the values of ten parameters: water temperature, salinity, dissolved О, pH, the contents of PO4 , Si, NO2, NO3, chlorophyll α and plant carotenoids at six depths between surface and 400 m. Data for temperature and salinity showed the absence of distinct thermoclines or haloelines which reflects the very low stability of waters in the Bay. The concentrations of nutrients were high during the entire year and they were not limiting for phytoplankton growth. Only nitrates decreased distinctly during algal blooms. The high dynamics of waters in the Bay causes a lowering in the chlorophyll α content to a maximum of about 2 mg/m3. Oceanographic, hydrochemical and hydrological conditions in Admiralty Bay are typical for the Antarctic shelf waters in this geographical region.

Go to article

Authors and Affiliations

Maciej Lipski

This page uses 'cookies'. Learn more