Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this research was to determine the groundwater intrinsic vulnerability to pollution of shallow groundwater in Wielkopolska Province, Poland and to assess the risk of pollution by nitrates. Wielkopolska is known as an area where the problem of water pollution by nitrates has existed for a long time due to intensive agriculture. DRASTIC method and its optimized version as well as four other risk evaluation methods were selected to assess the risk pollution with nitrates. The results of either method did not correlate with nitrate concentrations recorded inthe total of 1679 groundwater monitoring points. Therefore a new method of groundwater pollution risk assessment (NV-L) was proposed. The new method is based on optimized results of the DRASTIC system and the L parameter which considers not only land use types, but also the amount of nitrogen loading leached from soil as a result of fertilizer consumption, and from wet deposition. The final results of NV-L method showed that the largest part of the study area is covered by a very low class of pollution risk (30.6%). The high and very high classes occupy 11.6% of the area, mostly in the areas designated until 2012 as the Nitrate Vulnerable Zones. Validation of the results of all methods showed that the other methods than NV-L cannot be used as a basis for reliable assessment of the risk of groundwater pollution by nitrates, as they do not take into account the nitrogen load leached from the soil profile.
Go to article

Bibliography

  1. Air quality monitoring, www.powietrze.gios.gov.pl, access on 04.2021
  2. Al-Adamat, R., Foster, I. & Baban, S.M.J. (2003). Groundwater vulnerability mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC, Applied Geography, 23, 4, pp. 303-324.
  3. Alam, F., Umar, R., Ahmed, S. & Dar, F. A. (2014). A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arabian Journal of Geosciences. DOI:10.1007/s12517-012-0796-y
  4. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J. & Hackett, G. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA-600/2-87-035, EPA, Washington, DC.
  5. Babiker, I.S., Mohammed, M.A.A., Hiyama, T. & Kato, K. (2005). A GIS – based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights. Gifu Prefecture central Japan. Science of the Total Environment, 345, pp. 127-140.
  6. Bojarczuk, A., Jelonkiewicz, E., Jelonkiewicz, Ł. & Lenart-Boroń, A. (2019). Changes in the quality of shallow groundwater in agriculturally used catchment in the Wiśnickie Foothills (Southern Poland), Archives of Environmental Protection, 45, 1, pp. 19–25. DOI:10.24425/aep.2019.126420
  7. Central Hydrogeological Data Bank, Groundwater Bodies characteristics, Major Groundwater Reservoirs, www.pgi.gov.pl, access on 03.2021
  8. Corine Land Cover, 2018, https://clc.gios.gov.pl, access on 04.2021
  9. Dąbrowski, S., Przybyłek, J. & Górski, J. (2007). Warta lowland subregion, [in] Paczyński, B.  Sadurski, A., (Eds), Regional hydrogeology of Poland, Państwowy Instytut Geologiczny, Warsaw. (in Polish)
  10. Dąbrowski, S., Rynarzewski, W., Straburzyńska–Janiszewska, R., Janiszewska, B. & Pawlak, A. (2009). Identification of groundwater level changes due to anthropopression in the Warta water region, Biuletyn Państwowego Instytutu Geologicznego, 436, pp. 77-86. (in Polish)
  11. Digital Elevation Model, resolution 100100 m, www.gugik.gov.pl, access on 03.2021
  12. Dragon, K. & Górski, J. (2015). Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environ Earth Sci. 73: pp. 2153–2167. DOI:10.1007/s12665-014-3567-0
  13. Dragon, K. (2013). Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ Earth Sci. 68: pp. 2099–2109. DOI:10.1007/s12665-012-1895-5
  14. Duda, R., Witczak, S. & Żurek, A. (2011). Groundwater Vulnerability Map of Poland in scale 1:500 000. Ministry of the Environment. Cracow.
  15. Fiszer, J. & Derkowska-Sitarz, M. (2010). Forecast of development of depression cone and water inflows to Brown Coal Mine Konin including designed open pits Tomisławice and Ościsłowo, Biuletyn Państwowego Instytutu Geologicznego, 442: pp. 37-41. (in Polish)
  16. Galon, R. (1961). Morphology of the Noteć - Warta (or Toruń - Eberswalde) ice marginal streamway. Geographical Studies, Polish Academy of Sciences. Institute of Geography; no. 29, IGiPZ PAN; Wydaw. Geologiczne, Warsaw.
  17. Hydrogeological Map of Poland in the scale 1:50 000, Uppermost Aquifer, Vulnerability and Quality; Hydrogeological Map of Poland in the scale of 1:50 000, Uppermost Aquifer, Hydrodynamics and Occurrence, Geological Map of Poland in the scale 1:50 000, www.geoportal.pgi.gov.pl, access on 04.2021
  18. Jamorska, I. (2015). Conditions for the occurrence of groundwater in southern Kujawy Region, Przegląd Geologiczny, 63, 10/1: pp. 756-761. (in Polish)
  19. Krogulec, E. (2004). Vulnerability Assessment of Groundwater Pollution in the River Valley on the Basis of Hydrodynamic Evidences. Wydawnictwo UW, Warszawa, Poland. (in Polish)
  20. Krogulec, E. (2011). Intrinsic and specific vulnerability of groundwater in a river valley. Biuletyn Państwowego Instytutu Geologicznego 445, 337–344. (in Polish)
  21. Ławniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A. & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ Monit. Assess., 188, 172. DOI:10.1007/s10661-016-5167-9
  22. Local database, NUTS 5, https://stat.gov.pl, access on 04.2021
  23. Map of soil types on a scale of 1:500 000 (updated 2005-2010), www.iung.pl, access on 05.2021
  24. Margat, J. (1968). Groundwater Vulnerability Maps, Conception-Estimation-Mapping; EEC Institut Europeen de l’ Eau: Paris, 1968.
  25. Martínez-Bastida, J.J., Arauzo, M. & Valladolid, M. (2010) Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeology Journal, 18, pp. 681–698.
  26. Monitoring Data Base – MONBADA, gios.gov.pl, access on 04.2021
  27. Napolitano, P. & Fabbri, A.G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS, Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference), IAHS Publ. no. 235, pp. 559–566.
  28. NUTS 5 = LAU: Local Administrative Units, https://ec.europa.eu/, access on 05.2021
  29. Perrin, J., Pochon, A., Jeannin P.Y. & Zwahlen, F. (2004). Vulnerability assessment in karstic areas: validation by field experiments. Environmental Geology, 46:237–245. DOI:10.1007/s00254-004-0986-3
  30. Regulation of the Council of Ministers of February 14, 2020 on the adoption of the "Action Program to reduce water pollution with nitrates from agricultural sources and to prevent further pollution". Journal of Laws 2020. 243, www.isap.sejm.gov.pl, access on 07.2021. (in Polish)
  31. Regulation of the Director of Regional Water Management Authority in Poznań of July 12, 2012 on the determination of waters in the Warta water region, within the boundaries of the Wielkopolska Province, sensitive to pollution with nitrogen compounds from agricultural sources and particularly vulnerable areas, from which the outflow of nitrogen from agricultural sources to these waters should be limited. Journal of Laws of the Wielkopolska Province 2012.3143; https://poznan.wody.gov.pl/; access on 05.2021. (in Polish)
  32. Regulation of the Minister of the Environment of December 23, 2002 on the criteria for determining waters sensitive to pollution with nitrogen compounds with agricultural sources (2002). Journal of Laws 2002. 241. 2093, www.isap.sejm.gov.pl, access on 04.2021. (in Polish)
  33. Report on the implementation of Directive 91/676/EEC in the years 2016 – 2020 (2021). Ministry of Maritime Economy and Inland Navigation, https://www.gov.pl/attachment/b0a430f6-0555-4b0c-ab82-70d46ae1ffbc, access on 07.2021. (in Polish)
  34. Saha, D. & Alam, F. (2014). Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intensive agriculture area of the Gangetic plains, India. Environmental Monitoring and Assessment. DOI: 10.1007/s10661-014-4041-x
  35. Sarkar, M. & Pal, S.C. (2021). Application of DRASTIC and Modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. J. of the Indian Society of Remote Sensing, 49(5), pp. 1201–1219. DOI: 10.1007/s12524-020-01176-7
  36. Secunda, S., Collin, M. L. & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management. DOI: 10.1006/jema.1998.0221
  37. Shirazi, S.M., Imran, H.M. & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: a review, Journal of Risk Research, 15:8, 991-1011, DOI:10.1080/13669877.2012.686053
  38. Stewart, B.A., Viets, F.G. Jr. & Hutchinson, G.L. (1968). Agriculture’s effect on nitrate pollution of groundwater. J. Soil Water Conserv. 23, pp. 13–15.
  39. Szczepański, J. & Straburzyńska – Janiszewska, R. (2011). Forecast of the extent of the depression for the coal open pit Mąkoszyn – Grochowiska KWB „Konin” S.A., Biuletyn Państwowego Instytutu Geologicznego 445: 671-684. (in Polish)
  40. Voudouris, K., Mandrali, P. & Kazakis, N. (2018). Preventing groundwater pollution using vulnerability and risk mapping: the case of the Florina Basin, NW Greece. Geosciences 8(4), 129. DOI:10.3390/geosciences8040129
  41. Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management 277, 11133.0.
  42. Vrba, J. & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists (International Contributions to Hydrogeology 16). Verlag Heinz Heise, Hannover.
  43. Wiatkowski, M., Wiatkowska, B., Gruss, Ł., Rosik-Dulewska, C., Tomczyk, P., Chłopek, D. (2021) Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources, Archives of Environmental Protection, 47, 1, pp. 80–100, DOI 10.24425/aep.2021.136451
  44. Wrzesiński, D. & Perz, A. (2016). Features of the river runoff regime in the Warta catchment area. Bad. Fizjograf., R. 7, Ser. A – Geogr. Fiz. (A67), PTPN, Poznań, pp. 289–304. (in Polish)
  45. Yang, J., Tang, Z., Jiao, T. & Muhammad, A.M. (2017). Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, China. Environ Earth Sci., 76, 426 (2017). DOI:10.1007/s12665-017-6759-6 .
Go to article

Authors and Affiliations

Sebastian Zabłocki
1
Sadżide Murat-Błażejewska
2
Joanna Alicja Trzeciak
1
Ryszard Błażejewski
2

  1. University of Warsaw, Poland
  2. Poznan University of Life Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents methodology for calculating optimal drive torques which ensure reduced or minimal fuel consumption and emission of toxic components of exhaust gas during acceleration of a car. Data for fuel consumption and toxic emission in dynamic conditions (for a run with changeable speed) are obtained using experimental measurements during typical drive tests. A dynamic optimization problem for calculating a drive torque has been formulated using dynamic characteristics and a simple mat hematical model a vehicle when travelling in a straight line. The optimization problem has been solved for a drive with petrol and LPG. Results of numerical calculations followed by conclusions are presented.
Go to article

Authors and Affiliations

Kazimierz Rozmaniszyn
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

Baltic Europe, i.e. the sea and inland hinterland, form a unique macro-regional unit. Strong collaboration links as well as competition in the Baltic Sea Region are an inherent feature of the region from the beginnings of its civilization development. The article shows the forty-year-long Baltic integration process and the Polish scientific contribution to the process. Since 2004, the Baltic has become an internal EU sea. This fact no doubt strengthened cooperation of the countries around the Baltic Sea. In many spheres, these ties take the form of networking. An important stimulus for further integrations is the EU Strategy for the Baltic Sea Region. Political stabilisation and economic development may transform, in a longer time span, the emerging transnational Baltic Europe into a new economic and cultural European centre.

Go to article

Authors and Affiliations

Tadeusz Palmowski
Download PDF Download RIS Download Bibtex

Abstract

Life on Earth is a process carried out by billions of organisms belonging to a huge number of species. From the beginning of life to the present day, the number of species steadily increases, but the process is interrupted by deep crises (“Great Extinctions”) as the number of species rapidly declines. However, after a relatively short period of time – millions of years – the number of species returns to their previous heights and continues to rise until the next catastrophe. When the species Homo sapiens appeared on Earth, it found the greatest biotic diversity in the history of the Earth, but in a very short time – after its rapid population growth – the diversity began to decline again. Are we witnessing the beginning of another great extinction? If so, what would be the consequences for those species that survive? Is Homo sapiens also endangered? And life on Earth? Questions easy to ask, but difficult to answer.
Go to article

Authors and Affiliations

January Weiner
1

  1. Instytut Nauk o Środowisku, Uniwersytet Jagielloński, professor emeritus
Download PDF Download RIS Download Bibtex

Abstract

In the article, the author presents the basic relations between a nation state and a multicultural society. According to the author, the attitude of the nation state and the dominant nation in the state to the phenomenon of cultural diversity of society is a key phenomenon in the theory and practice of multiculturalism. Namely, the nation state is characterized by two strategies defining the attitude to the cultural diversity of society. It is a strategy of cultural homogenization and a pluralistic. The emergence of a pluralistic strategy begins with the occurrence and eventual growth of phenomena and processes referred to as multiculturalism and multicultural society.

Go to article

Authors and Affiliations

Andrzej Sadowski

This page uses 'cookies'. Learn more