Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper is a continuation of the publication under the title “Acoustic diagnostics applications in the study of technical condition of combustion engine” and concerns the detailed description of decision support system for identifying technical condition (type of failure) of specified combustion engine. The input data were measured sound pressure levels of specific faults in comparison to the noise generated by undamaged motor. In the article, the whole procedure of decision method based on game graphs is described, as well as the interface of the program for direct usage.

Go to article

Authors and Affiliations

Adam Deptuła
Piotr Osiński
Urszula Radziwanowska
Download PDF Download RIS Download Bibtex

Abstract

Flowability of fine, highly cohesive calcium carbonate powder was improved using high energy mixing (dry coating) method consisting in coating of CaCO3 particles with a small amount of Aerosil nanoparticles in a planetary ball mill. As measures of flowability the angle of repose and compressibility index were used. As process variables the mixing speed, mixing time, and the amount of Aerosil and amount of isopropanol were chosen. To obtain optimal values of the process variables, a Response Surface Methodology (RSM) based on Central Composite Rotatable Design (CCRD) was applied. To match the RSM requirements it was necessary to perform a total of 31 experimental tests needed to complete mathematical model equations. The equations that are second-order response functions representing the angle of repose and compressibility index were expressed as functions of all the process variables. Predicted values of the responses were found to be in a good agreement with experimental values. The models were presented as 3-D response surface plots from which the optimal values of the process variables could be correctly assigned. The proposed, mechanochemical method of powder treatment coupled with response surface methodology is a new, effective approach to flowability of cohesive powder improvement and powder processing optimisation.

Go to article

Authors and Affiliations

Karolina Leś
Karol Kowalski
Ireneusz Opaliński

This page uses 'cookies'. Learn more