Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present an experimental setup developed for the calibration of dynamic force transducers which is based on the drop mass method. The traceability to SI units is realized through well-known mass characteristics and a reference shock accelerometer attached to that mass. Two approaches are proposed to analyse dynamic force employing a drop mass system. One approach depends on the inertial force of a falling mass while the other deals with the work-energy principle. Results of both approaches are then compared to the response of a statically calibrated force transducer. It is shown that the obtained maximum relative deviations between the response of force transducer and the first approach results are 1% while those of the second approach are 2%.
Go to article

Bibliography

[1] Fujii, Y., Isobe, D., Saito, S., Fujimoto, H., & Miki, Y. (2000). A method for determining the impact force in crash testing. Mechanical Systems and Signal Processing, 14(6), 959–965. https://doi.org/10.1006/mssp.1999.1272
[2] Fujii, Y. (2003). A method for calibrating force transducers against oscillation force. Measurement Science and Technology, 14(8), 1259–1264. https://doi.org/10.1088/0957-0233/14/8/310
[3] Hjelmgren, J. (2002). Dynamic Measurement of Force – A Literature Survey (SP Report 2002:34). SP Swedish National Testing and Research Institute SP Measurement Technology.
[4] Jun, Y., Yiqing, C., Xuan, H., & Xiao, Y. (2017). Impulse force calibration with dropped weight and laser vibrometer. IMEKO 23rd TC3, 13th TC5 and 4th TC22 International Conference, Finland, 19. https://www.imeko.org/publications/tc3-2017/IMEKO-TC3-2017-030.pdf
[5] Kobusch, M., Link, A., Buss, A., & Bruns, T. (2007). Comparison of shock and sine force calibration methods. IMEKO 20th TC3, 3rd TC16 and 1st TC22 International Conference, Maxico. https://www.imeko.org/publications/tc3-2007/IMEKO-TC3-2007-007u.pdf
[6] Satria, E., Takita, A., Nasbey, H., Prayogi, I. A., Hendro, H., Djamal, M., & Fujii, Y. (2018). New technique for dynamic calibration of a force transducer using a drop ball tester. Measurement Science and Technology, 29(12). https://doi.org/10.1088/1361-6501/aaeb71
[7] Schlegel, C., Kieckenap, G., Glöckner, B., Buß, A., & Kumme, R. (2012). Traceable periodic force calibration. Metrologia, 49(3), 224–235. https://doi.org/10.1088/0026-1394/49/3/224
[8] Sivaselvan, M. V., Reinhorn, A. M., Shao, X., & Weinreber, S. (2008). Dynamic force control with hydraulic actuators using added compliance and displacement compensation. Earthquake Engineering and Structural Dynamics, 37(15), 1785–1800. https://doi.org/10.1002/eqe.837
[9] Stanford, A. L., & Tanner, J. M. (1985). Work, Power, and Energy. In Physics for Students of Science and Engineering (pp. 109–144). Elsevier Inc. https://doi.org/10.1016/b978-0-12-663380-1.50008-2
[10] Vlajic, N., & Chijioke, A. (2017). Traceable calibration and demonstration of a portable dynamic force transfer standard. Metrologia, 54(4), S83–S98. https://doi.org/10.1088/1681-7575/aa75da
[11] Yang, Y., Zhao, Y., & Kang, D. (2016). Integration on acceleration signals by adjusting with envelopes. Journal of Measurements in Engineering, 4(2), 117–121. https://www.jvejournals.com/ article/16965/pdf
[12] Zhang, L., & Kumme, R. (2003). Investigation of interferometric methods for dynamic force measurement. In XVII IMEKO World Congress, Metrology in the 3rd Millennium, Croatia, 315–318.
[13] Zhang, L.,Wang, Y., & Zhang, L. (2010). Investigation of calibrating force transducer using sinusoidal force. AIP Conference Proceedings, 1253, 395–401. https://doi.org/10.1063/1.3455481
Go to article

Authors and Affiliations

Shaker A. Gelany
1
Gouda M. Mahmoud
1

  1. National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The following article presents the results of selected properties of regranulates of polyamide 6.6, regranules of polyamide contaminated with polypropylene and regranules of polyamide contaminated with silicone. The tested materials came from the reprocessing of polyamides 6.6 originally derived from production of airbags from renowned world producers (material for the research came from production waste). The results of examination were referred to regranulates of uncontaminated polyamide but also obtained from waste from the production of these airbags.
The influence of impurities on properties of regranulates such as their density and melt flow index was assessed. The tests allowed to show a significant impact of impurities on the density but above all on the mass and volume flow rate index which ranged from 47 to 116 g/10 min.
In the case of standardized test specimens selected thermal and mechanical properties were analyzed. Differential scanning calorimetry was used to assess the impact of impurities on the thermal properties of polyamides, allowing primarily identification of materials and impurities (especially polypropylene) as well as characteristic temperatures and the enthalpy of melting of the materials being analyzed. The mechanical properties were assessed using a DMA device. DMA research allowed to determine changes in mechanical properties in a wide temperature range of tested materials. It allowed to obtain full characteristics of changes in material stiffness under the influence of two factors, i.e. temperature and content of impurities, like polypropylene or silicone.
Go to article

Authors and Affiliations

T. Stachowiak
1
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, Częstochowa 42-200, 69 J.H. Dąbrowskiego Str., Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ n ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.

Go to article

Authors and Affiliations

Wiktor Staszewski
Tadeusz Gudra
Krzysztof J. Opieliński

This page uses 'cookies'. Learn more