Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the methodology for measuring verification of the phenomenon of fades in the DAB+ SFN. The verification is related to comparing the characteristics of the fades determined theoretically with the occurring fades in the real environment of a large city. The conditions favorable for the occurrence of fading are presented and by selecting the appropriate propagation analysis tool, the places where the occurrence of fading is most likely were selected. In these places an analysis of the characteristics of fades was carried out and the conditions for their verification were determined.
Go to article

Bibliography

[1] WorldDAB, „WorldDAB infographic (Q2 2019)”, https://www.worlddab.org/resources/infographic. (29 03 2020).
[2] S. Kubal, M. Kowal, P. Piotrowski, K. Staniec, “Optimal Transmission Technique for DAB+ Operating in the SFN Network”, in Springer Nature Switzerland, Theory and Applications of Dependable Computer Systems, Proceedings of the Fifteenth International Conference on Dependability of Computer Systems DepCoS-RELCOMEX, June 29 – July 3, 2020, Brunów, Poland.
[3] European Telecommunications Standards Institute, EN 300 401 V2.1.1 Draft ETSI EN 300 401 V2.1.1 Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers, 2016.
[4] European Broadcasting Union, „TR 24 SFN Frequency planning and network implementation with regard to T-DAB and DVB-T,” Genewa, 2013.
[5] R. Zieliński, “Fade analysis in DAB+ SFN network in Wroclaw”, Proc. of the 2019 International Symposium on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, September 2– 6, 2019, (978-1-7281-0594-9/19/$31.00 © 2019 IEEE).
[6] D. Plebs, J. Wout., P. Angueira, J.A. Arenas, L. Verloock, L. Martens,: “On the Methodology for Calculating SFN Gain in Digital Broadcast Systems”, IEEE Transactions on Broadcasting, Vol. 56, No. 3, September 2010, pp.331-339
[7] K. Staniec, S. Kubal, M. Kowal, P. Piotrowski,: “On the Influence of the Coding Rate and SFN Gain on DAB+ Coverage”, Advances in Intelligent Systems and Computing, 2020.
[8] P. Gilski, J. Stefanski, “Subjective and Objective Comparative Study of DAB+ Broadcast System”, Archives of Acoustics, Vol. 42, No. 1, pp. 3–11 (2017), by PAN – IPPT)
[9] S. Brachmański, M. Kin, “Assessment of speech quality in Digital Audio Broadcasting (DAB+) system”, AES 134th Convention, Rome, Italy, 2013.
[10] M. Kin, “Subjective evaluation of sound quality of musical recordings transmitted via DAB+ system", in Proc. 134th Audio Engineering Society Convention, Rome, Italy, 2013, pp. 1231{2366.
[11] P. Gilski., J. Stefanski, “Digital Audio Broadcasting or Webcasting: A Network Quality Perspective”, Journal of Telecommunications and Information Technology, 1, 9–15, 2016.
[12] P. Pocta, J.G. Beerends, “Subjective and Objective Assessment of Perceived Audio Quality of Current Digital Audio Broadcasting Systems and WebCasting Applications”, IEEE Transactions on Broadcasting, 61, 407–415, 2015.
[13] International Telecommunication Union, ITU-R BS.2214-3, “Planning parameters for terrestrial digital sound broadcasting systems in VHF bands”, 2019.
[14] European Broadcasting Union, TECH 3391, “Guidelines for DAB network planning”, Genewa, 2018.
[15] National Institut of Telecommunications, „LokalDAB,”. https://www.il-pib.pl/pl/projekty-krajowe/projekty-krajowe-ze-srodkow-na-nauke/projekt-localdab, (25 05 2020).
[16] Radio Polska, „MUX LokalDAB,”. http://radiopolska.pl/wykaz/mux/145. (2020 05 25).
[17] European Broadcasting Union, TR 016, “Benefits and Limitations of Single Frequency Networks (SFN) for DTT”, 2012.
[18] A. Tissen, A. Waal, F. Maier, “Evaluations and Measurements of a Single Frequency Network with DRM+”, European Wireless Conference, Poznan, 2012.
[19] R. Zieliński, “Conditions for obtaining correct DAB+ signal reception on a single frequency network” (in polish), Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 6, 2017, str. 509-512.
[20] R. Zieliński, “Analysis of depth of fades in a single frequency DAB+ network on the example of the network in Wroclaw” (in polish), Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 6, 2018, str. 320-325
[21] R. Zieliński, “Distribution of fade area in a SFN network on the example of the DAB+ network” (in polish), Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 8-9, 2018, str. 581-584.
[22] R. Zieliński, “Analysis of the phenomenon of fades in the SFN DAB+ network with three transmitters on the example of the network in Wroclaw” (in polish),. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 6, 2019, str. 386-391.
[23] R. Zieliński, “Analysis and Comparision of the Fade Phenomenon in the SFN DAB+ Network With Two and Three Transmitters”, Intl Journal of Electronics and Telecommunications, 2020, Vol. 66, No. 1, str.. 85-92.
[24] International Telecommunication Union, Recommendation ITU-R P.1546-5 : “Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz”, 2013.
[25] I. Michalski, thesis, "Analysis of the distribution of e-m field strength and fades from the SFN DAB+ network in Wroclaw”, Wroclaw University of Science and Technology, 2020.
Go to article

Authors and Affiliations

Igor Michalski
1
ORCID: ORCID
Ryszard J. Zielinski
2
ORCID: ORCID

  1. National Institute of Telecommunications, Poland
  2. Wroclaw University ofScience and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work concerns the study of the coatings for the ultrasound frequency range as a quasi one-dimensional phononic crystal structure protecting a sea object against high resolution active sonar in the frequency range most commonly found for this type of equipment. The topology of the examined structure was optimized to obtain a band gap in the 2.2-2.3 MHz frequency band. For this purpose, a genetic algorithm was used, which allows for optimal distribution of individual elements of the ultrasound multilayer composite. By optimal distribution is meant to achieve a structure that will allow minimal reflectance in a given frequency range without height reflectance peaks with a small half width. Analysis of the wave propagation was made using the Transfer Matrix Method (TMM). As part of the research, 15 and 20-layer structures with reflectance at the level of 0.23% and 0.18%, respectively, were obtained. Increasing the number of layers in the analyzed structures resulted in finding such a distribution in which a narrow band of low reflectance was obtained, such distributions could also be used as bandpass filters. The use of a genetic algorithm for designing allows to obtain modern coatings, the characteristics of which result from the structure.
Go to article

Authors and Affiliations

S. Garus
1
ORCID: ORCID
W. Sochacki
1
ORCID: ORCID
J. Garus
1
ORCID: ORCID
A.V. Sandu
2
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
  2. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Blv d. D. Mangeron 71, 700050 lasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method and results of measurements carried out at four secular points: P, — Wilczekodden, P2 — Hyttevika, P3 — Gashamna and P4 — Treskelodden. No essential changes were found in the distribution of the anomalous field ΔT with respect to the results of observations made in 1979.

Go to article

Authors and Affiliations

Andrzej Koblański

This page uses 'cookies'. Learn more