Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Pollution continues to experience a rapid increase so cities in the world have required the use of renewable energy. One of the keys that can prevent climate change with a sustainable system is renewable energy. Renewable energy production, especially for hybrid systems from biomass and wind, is the objective of the analysis in this work. The potential of feedstock for different biofuels such as bio-diesel, bio-ethanol, bio-methane, bio-hydrogen, and biomass is also discussed in this paper. The sustainability of the energy system for the long term is the main focus of work in this investigation. The configuration of the hybrid system between biomass energy and wind energy as well as some problems from various design factors are also presented. Based on the findings, this alternative energy utilization through biomass-based hybrids can save costs and improve environmental conditions, especially for the electrification of off-grid rural areas. This paper will provide important information to policymakers, academics, and investors, especially in carrying out the development and factors related to the utilization of wind-biomass-based hybrid energy systems.
Go to article

Bibliography

  1. Aguilar-Rivera, N., Michel-Cuello, C., Cervantes-Niño, J.J, Gómez-Merino, F.C. Olvera, & Vargas, L.A. (2021). 12 - Effects of public policies on the sustainability of the biofuels value chain. In: Ray RCBT-SB (ed) Applied Biotechnology Reviews. Academic Press, pp 345–379
  2. Al-Ghussain, L., Darwish, Ahmad, A., Abubaker, A. M. & Mohamed, M. A. (2021). An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustain Energy Technol Assessments, 46:101273. DOI:10.1016/j.seta.2021.101273
  3. Alagumalai, A., Mathimani, T., Pugazhendhi, A., Atabani, A.E., Brindhadevi, K. & Canh, N.D. (2020). Experimental insight into co-combustion characteristics of oxygenated biofuels in modified DICI engine. Fuel, 278:118303. DOI:10.1016/j.fuel.2020.118303
  4. Amjith, L.R. & Bavanish, B. (2021a). Design and analysis of 5 MW horizontal axis wind turbine. Mater Today Proc. 37, pp. 3338–3342.
  5. Amjith, L.R. & Bavanish, B. (2021b). Optimization of horizontal axis wind turbine blade using FEA. Mater Today Proc. 37, pp. 3367–3371. DOI:10.1016/j.matpr.2020.09.215
  6. Arias, D.M., Ortíz-Sánchez, E., Okoye, P.U., Rodríguez-Rangel, H., Ortega, A.B., Longoria, A., Domínguez-Espíndola, R. & Sebastian, P.J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci Total Environ. 794:148636. DOI:10.1016/j.scitotenv.2021.148636
  7. Arteaga-López, E. & Angeles-Camacho, C. (2021). Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines. Energy, 220:119701. DOI:10.1016/j.energy.2020.119701
  8. Arumugam, P., Ramalingam, V. & Bhaganagar, K. (2021). A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustain Energy Technol Assessments, 44:101019. DOI:10.1016/j.seta.2021.101019
  9. Bodzek, M. (2022). Nanoparticles for water disinfection by photocatalysis: A review. Arch Environ Prot. 48, pp. 3–17. DOI:10.24425/aep.2022.140541
  10. Chen, H., Xia, A., Zhu, X., Huang, Y., Zhu, X. & Liao, Q. (2022). Hydrothermal hydrolysis of algal biomass for biofuels production: A review. Bioresour Technol. 344:126213. DOI:10.1016/j.biortech.2021.126213
  11. Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B. & Chang, J. (2021). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. J Hazard Mater, 404:124125. DOI:10.1016/j.jhazmat.2020.124125
  12. Chilakamarry, C.R., Mimi Sakinah, A.M., Zularisam, A.W., Pandey, A. & Dai-Viet, N. Vo. (2021). Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environ Technol Innov. 24:101902. DOI:10.1016/j.eti.2021.101902
  13. Chmielniak, T. (2019). Wind and solar energy technologies of hydrogen production – a review of issues. Polityka Energ - Energy Policy J. 22, pp.5–20.
  14. Chowdhury, H., Loganathan, B., Mustary, I., Alam, F. & Mobil, S.M.A. (2019). Chapter 12 - Algae for biofuels: The third generation of feedstock. [In:] Basile, A., Dalena, F.B.T-S. and TG, F. (eds). Elsevier, pp 323–344
  15. Chudy, R., Szulecki, K., Siry, J. & Grala, R. (2021). Woody Biomass for Energy Production. Acad - Mag Polish Acad Sci. 62–65. DOI:10.24425/academiaPAS.2021.138414
  16. Council GWE (2021) GWEC global wind report 2021. Glob Wind Energy Counc Brussels, Belgium
  17. Das, P.V.P. C., Mathimani, T. & Pugazhendhi, A. (2021a). A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. Sci Total Environ. 766:144213. DOI:10.1016/j.scitotenv.2020.144213
  18. Das, P.V.P.C., Mathimani, T. & Pugazhendhi, A. (2021b). Recent advances in thermochemical methods for the conversion of algal biomass to energy. Sci Total Environ. 766:144608. DOI:10.1016/j.scitotenv.2020.144608
  19. Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A. & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod. 253:119770. DOI:10.1016/j.jclepro.2019.119770
  20. Erdiwansyah, E., Mahidin, M., Husin, H., Nasaruddin, N., Khairil, K., Zaki, M. & Jamaluddin, J. (2020). Investigation of availability, demand, targets, economic growth and development of RE 2017-2050: Case study in Indonesia. International Journal of Coal Science & Technology, 8, pp. 483–499. DOI:10.1007/s40789-020-00391-4
  21. Erdiwansyah, E., Gani, A. M.H.N., Mamat, R. & Sarjono, R.E. (2022). Policies and laws in the application of renewable energy Indonesia: A reviews. AIMS Energy, 10, pp. 23–44. DOI:10.3934/energy.2022002
  22. Erdiwansyah, E., Mahidin, H. H., Nasaruddin, S., Zaki, M. & Muhibbddin. (2021). A critical review of the integration of renewable energy sources with various technologies. Prot Control Mod Power Syst. 6:3. DOI:10.1186/s41601-021-00181-3
  23. Erdiwansyah, E., Mamat, R., Sani, M.S.M., Sudhakar, K., Kadarohman, A. & Sardjono, R.E. (2019a). An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports, 5, pp.467–479. DOI:10.1016/j.egyr.2019.04.009
  24. Erdiwansyah,E., Mamat, R., Sani, M.S.M. & Sudhakar, K. (2019b). Renewable energy in Southeast Asia: Policies and recommendations. Sci Total Environ. DOI:10.1016/j.scitotenv.2019.03.273
  25. Ergal, İ., Fuchs, W., Hasibar, B., Thallinger, B., Bochmann, G. & Rittmann, S.K-M.R. (2018). The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv. 36, pp. 2165–2186. DOI:10.1016/j.biotechadv.2018.10.005
  26. Farina, A. & Anctil, A. (2022). Material consumption and environmental impact of wind turbines in the USA and globally. Resour Conserv Recycl. 176:105938. DOI:10.1016/j.resconrec.2021.105938
  27. Ferreira Mota, G., Germano de Sousa, I., Luiz Barros de Oliveira, A., Cavalcante, A.L.G., Moreira, K.S., Cavalcante, F.T.T., Erick da Silva Souza, J., Rafael de Aguiar Falcão, I., Rocha, T.G., Valério, R.B.R., Cristina Freitas de Carvalho, S., Neto, F.S., Serpa, J.F., Karolinny Chaves de Lima, R., Cristiane Martins de Souza, M. & José C.S. dos Santos. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Res. 62:102616. DOI:10.1016/j.algal.2021.102616
  28. Gambelli, D., Alberti, F., Solfanelli, F., Vairo, D. & Zanoli, R. (2017). Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks. Energy Policy, 103, pp. 165–178. DOI:10.1016/j.enpol.2017.01.013
  29. Gaonkar, R.U. & Hegde, R.N. (2022). An investigation on the performance and viability of a hybrid twisted blade profile for a horizontal axis micro wind turbine. Mater Today Proc. 49, pp. 1200–1209. DOI:10.1016/j.matpr.2021.06.288
  30. Ge, S., Manigandan, S., Mathimani, T., Basha, S., Xia, C., Brindhadevi, K., Unpaprom, Y., Whangchai, K. & Pugazhendhi, A. (2022). An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Sci Total Environ. 813:152418
  31. Ge, S., Yek, P.N.Y., Cheng, Y.W., Xia, C., Mahari, W.A.W., Liew, R.K., Peng, W., Yuan, T.Q., Tabatabaei, M., Aghbashlo, M., Sonne, C. & Lam S.S. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renew Sustain Energy Rev. 135:110148. DOI:10.1016/j.rser.2020.110148
  32. Ghosh, M., Ghosh, A. & Roy, A. (2020). Renewable and Sustainable Materials in Automotive Industry. [In:] Hashmi, S., Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 162–179
  33. Glivin, G., Edwin, M. & Sekhar, S.J. (2018). Techno‐economic studies on the influences of nonuniform feeding in the biogas plants of educational institutions. Environ Prog Sustain Energy, 37, pp. 2156–2164
  34. Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P.C. & Sekhar, J. (2021a). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302:121153. DOI:10.1016/j.fuel.2021.121153
  35. Glivin, G. & Sekhar, J. (2020a). Simulation of anaerobic digesters for the non-uniform loading of biowaste generated from an educational institution. Lat Am Appl Res Int J. 50, pp. 33–40.
  36. Glivin, G. & Sekhar, S.J. (2020b). Waste potential, barriers and economic benefits of implementing different models of biogas plants in a few Indian educational institutions. BioEnergy Res. 13, pp. 668–682.
  37. Glivin, G., Vairavan, M., Manickam, P. & Santhappan, J.S. (2021b). Techno Economic Studies on the Effective Utilization of Non-Uniform Biowaste Generation for Biogas Production. Anaerob Dig Built Environ. 81.
  38. Goh, Y., Yap, S.P. & Tong, T.Y. (2020). Bamboo: The Emerging Renewable Material for Sustainable Construction. [In:] Hashmi S, Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 365–376
  39. Guo, T., Guo, X., Gao, Z., Li, S., Zheng, X., Gao, X., Li, R., Wang, T., Li, Y. & Li, D. (2021). Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine. Appl Energy, 303:117590. DOI:10.1016/j.apenergy.2021.117590
  40. Gururani, P., Bhatnagar, P., Bisht, B., Jaiswal, K.K., Kumar, V., Kumar, S., Vlaskin, M.S., Grigorenko, A.V. & Rindin, K.G. (2022). Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel, 316:123351. DOI:10.1016/j.fuel.2022.123351
  41. GWEC (2021). GWEC forecasts 817 GW of wind power in 2021. https://gwec.net/gwec-forecasts-817-gw-of-wind-power-in-2021/#:~:text=The global cumulative installed wind,153.5 GW in 2017-2021.
  42. Heffron, R.J., Körner, M-F., Sumarno, T., Wagner, J., Weibelzahl, M. & Fridgen, G. (2022). How different electricity pricing systems affect the energy trilemma: Assessing Indonesia’s electricity market transition. Energy Econ, 107:105663. DOI:10.1016/j.eneco.2021.105663
  43. Hien, P.D. (2019) Excessive electricity intensity of Vietnam: Evidence from a comparative study of Asia-Pacific countries. Energy Policy, 130, pp. 409–417. DOI:10.1016/j.enpol.2019.04.025
  44. Indonesia C (2021) RI Targets Renewable Energy to Reach 50% by 2050
  45. International Energy Agency IEA, Bank W (2014) Sustainable Energy for All 2013-2014: Global Tracking Framework Report. The World Bank
  46. Jurasz, J. & Mikulik, J. (2017) Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective. Bull. Polish Acad. Sci. Tech. Sci. 65, pp. 859–869
  47. Kalinichenko, A. & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Arch Environ Prot. 45, pp. 68–83. DOI:10.24425/aep.2019.126423
  48. Kandasamy, S., Bhuvanendran, N., Narayanan, M. & He, Z. (2022). Chapter 13 - Thermochemical conversion of algal biomass. [In:] El-Sheekh, M., Abomohra AE-FBT-H of AB (eds). Elsevier, pp. 281–302
  49. Kandasamy, S., Devarayan, K., Bhuvanendran, N., Zhang, B., He, Z., Narayanan, M., Mathimani, T., Ravichandran, S. & Pugazhendhi, A. (2021). Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts. J Environ Chem Eng. 9:105321. DOI:10.1016/j.jece.2021.105321
  50. Karpagam, R., Jawaharraj, K. & Gnanam, R. (2021). Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ. 766:144236. DOI:10.1016/j.scitotenv.2020.144236
  51. Kim, B., Heo, H.Y., Son, J., Yang, J., Chang, Y.K., Lee, J.H. & Lee, J.W. (2019). Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. Algal Res. 41:101557. DOI:10.1016/j.algal.2019.101557
  52. Klaimi, R., Alnouri, S.Y. & Stijepović, M. (2021). Design and thermo-economic evaluation of an integrated concentrated solar power – Desalination tri-generation system. Energy Convers Manag. 249:114865. DOI:10.1016/j.enconman.2021.114865
  53. Kulyal, L. & Jalal, P. (2022). Bioenergy, a finer alternative for India: Scope, barriers, socio-economic benefits and identified solution. Bioresour Technol Reports, 17:100947. DOI:10.1016/j.biteb.2022.100947
  54. Kumar, G., Cho, S-K., Sivagurunathan, P., Anburajan, P., Mahapatra, D.M., Park, J.H., Pugazhendhi, A. (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrogen Energy, 43: pp. 19885–19901. DOI:10.1016/j.ijhydene.2018.09.040
  55. Kumar, G., Mathimani, T., Sivaramakrishnan, R., Shanmugam, S., Bhatia, S.K., Pugazhendhi, A. (2020). Application of molecular techniques in biohydrogen production as a clean fuel. Sci Total Environ. 722:137795. DOI:10.1016/j.scitotenv.2020.137795
  56. Kumar Sharma, A., Kumar Ghodke, P., Manna, S. & Chen, W-H. (2021). Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. Bioresour Technol. 342:126057. DOI:10.1016/j.biortech.2021.126057
  57. Lagdani, O., Tarfaoui, M., Nachtane, M., Trihi, M. & Laaouidi, H. (2021). Modal analysis of an iced offshore composite wind turbine blade. Wind Eng. 0309524X211011685
  58. Lin, C-Y. & Lu, C. (2021). Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renew Sustain Energy Rev. 136:110445. DOI:10.1016/j.rser.2020.110445
  59. Liu, H., Li, Y., Duan, Z. & Chen, C. (2020). A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers Manag. 224:113324. DOI:10.1016/j.enconman.2020.113324
  60. Malik, P., Awasthi, M. & Sinha, S. (2022). A techno-economic investigation of grid integrated hybrid renewable energy systems. Sustain Energy Technol Assessments, 51:101976. DOI:10.1016/j.seta.2022.101976
  61. Mathimani, T. & Mallick, N. (2019). A review on the hydrothermal processing of microalgal biomass to bio-oil - Knowledge gaps and recent advances. J Clean Prod. 217, pp. 69–84. DOI:10.1016/j.jclepro.2019.01.129
  62. Mathimani, T., Sekar, M., Shanmugam, S., Sabir, J.S.M., Chi, N.T.L. & Pugazhendhi, A. (2021). Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci Total Environ. 771:144700. DOI:10.1016/j.scitotenv.2020.144700
  63. Micallef, D. & Rezaeiha, A. (2021). Floating offshore wind turbine aerodynamics: Trends and future challenges. Renew Sustain Energy Rev. 152:111696. DOI:10.1016/j.rser.2021.111696
  64. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019) Ammonia emission from livestock productionin Poland and its regional diversity in the years 2005–2017. Arch Environ Prot. 45, pp. 114–121. DOI:10.24425/aep.2019.130247
  65. Mori, A. (2021) 2 Struggles for energy transition in the electricity system in Asian countries. China’s Carbon-Energy Policy Asia’s Energy Transit Carbon Leakage, Relocat Halos 23
  66. Moshood, T.D., Nawanir, G. & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges, 5:100207. DOI:10.1016/j.envc.2021.100207
  67. Musharavati, F., Khanmohammadi, S. & Pakseresht, A. (2021). A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization. Energy Convers Manag. 230:113829. DOI:10.1016/j.enconman.2021.113829
  68. Narwane, V.S., Yadav, V.S., Raut, R.D., Narkhede, B.E. & Gardas, B.B. (2021). Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach. Renew Energy 164, pp. 298–309. DOI:10.1016/j.renene.2020.09.077
  69. Neupane, D., Kafle, S., Karki, K.R., Kim, D.H. & Pradhan, P. (2022). Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis. Renew Energy, 181, pp. 278–291. DOI:10.1016/j.renene.2021.09.027
  70. Oliveira, C.Y.B., D’Alessandro, E.B., Antoniosi Filho, N.R., Lopes, R.G. & Derner, R.B. (2021). Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Sci Total Environ. 759:143476. DOI:10.1016/j.scitotenv.2020.143476
  71. Olsztyńska, I. (2019). Biomass in the fuel mix of the Polish energy and heating sector. Polityka Energ - Energy Policy J. 22, pp. 99–118
  72. Ong, E.S., Rabbani, A.H., Habashy, M.M., Abdeldayem, O.M., Al-Sakkari, E.G. & Rene, E.R. (2021). Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Environ Pollut. 291:118160. DOI:10.1016/j.envpol.2021.118160
  73. Openshaw, K. (2010). Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass and Bioenergy, 34, pp. 365–378. DOI:10.1016/j.biombioe.2009.11.008
  74. Ortolani, A., Persico, G., Drofelnik, J., Jackson, A. & Campobasso, M.S. (2020). Cross-comparative analysis of loads and power of pitching floating offshore wind turbine rotors using frequency-domain Navier-Stokes CFD and blade element momentum theory. Journal of Physics: Conference Series. IOP Publishing, p 52016
  75. Outlook IIET. (2021). Tracking Progress of Energy Transition in Indonesia. Jakarta Inst Essent Serv Reform
  76. Pichika, S.V.V.S.N., Yadav, R., Geetha Rajasekharan, S., Praveen, H.M. & Inturi, V. (2022). Optimal sensor placement for identifying multi-component failures in a wind turbine gearbox using integrated condition monitoring scheme. Appl Acoust. 187:108505. DOI:10.1016/j.apacoust.2021.108505
  77. Pitchia Krishnan, B., Mathanbabu, M., Sathyamoorthy, G., Gokulnath, K. & Kumar, L.G.S. (2021). Performance estimation and redesign of horizontal axis wind turbine (HAWT) blade. Mater Today Proc. 46, pp. 8025–8031. DOI:10.1016/j.matpr.2021.02.777
  78. Pourrajabian, A., Dehghan, M. & Rahgozar, S. (2021). Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one? Sustain Energy Technol Assessments, 44:101022. DOI:10.1016/j.seta.2021.101022
  79. Reilly, L.A. (2020). Exploration of Model-Resolution Dependence of Forecasted Wind Hazards for Small Unmanned Aircraft System Operations. The University of North Dakota ProQuest Dissertations Publishing,   2020. 28085974.
  80. Saha, R., Bhattacharya, D. & Mukhopadhyay, M. (2022). Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Convers Manag. X 13:100153. DOI:10.1016/j.ecmx.2021.100153
  81. Sameeroddin, M., Deshmukh, M.K.G., Viswa, G. & Sattar, M.A. (2021). Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Mater Today Proc. DOI:10.1016/j.matpr.2021.01.746
  82. Sangeetha, T., Rajneesh, C.P. & Yan, W-M. (2020). 15 - Integration of microbial electrolysis cells with anaerobic digestion to treat beer industry wastewater. [In:] Abbassi, R., Yadav, A.K., Khan, F. & Garaniya, VBT-IMFC for WT (eds). Butterworth-Heinemann, pp. 313–346
  83. Saravanan, A.P., Pugazhendhi, A. & Mathimani, T. (2020). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel 272:117635. DOI:10.1016/j.fuel.2020.117635
  84. Sellevold, E., May, T., Gangi, S., Kulakowski, J., McDonnell, I., Hill, D. & Grabowski, M. (2020). Asset tracking, condition visibility and sustainability using unmanned aerial systems in global logistics. Transp Res Interdiscip Perspect. 8:100234. DOI:10.1016/j.trip.2020.100234
  85. Shakya, S. (2020). Performance analysis of wind turbine monitoring mechanism using integrated classification and optimization techniques. J Artif Intell. 2, pp. 31–41.
  86. Shanmugam, S., Mathimani, T., Rene, E.R., Geo, V.E., Arun, A., Brindhadevi, K. & Pugazhendhi, A. (2021a). Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects. Int J Hydrogen Energy, 46, pp. 11201–11216. DOI:10.1016/j.ijhydene.2020.10.132
  87. Shanmugam, S., Sekar, M., Sivaramakrishnan, R., Raj, T., Ong, E.S., Rabbani, A.H., Rene, E.R., Mathimani, T., Brindhadevi, K. & Pugazhendhi, A. (2021b). Pretreatment of second and third generation feedstock for enhanced biohythane production: Challenges, recent trends and perspectives. Int J Hydrogen Energy, 46, pp. 11252–11268. DOI:10.1016/j.ijhydene.2020.12.083
  88. Sharma, M., Singh, J., Baskar, C. & Kumar, A. (2019). A comprehensive review of renewable energy production from biomass-derived bio-oil. Biotechnol J Biotechnol Comput Biol Bionanotechnol, 100:
  89. Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C. & Pugazhendhi, A. (2022). Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci Total Environ, 808:151969. DOI:10.1016/j.scitotenv.2021.151969
  90. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Arch Environ Prot. 45, pp. 126–135. DOI:10.24425/aep.2019.126427
  91. Solomin, E. V., Terekhin, A.A., Martyanov, A.S., Shishkov, A.N., Kovalyov, A.A., Ismagilov, D.R. & Ryavkin, G.N. (2022). Horizontal axis wind turbine yaw differential error reduction approach. Energy Convers Manag. 254:115255. DOI:10.1016/j.enconman.2022.115255
  92. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N. & Aminabhavi, T.M. (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut. 276:116731. DOI:10.1016/j.envpol.2021.116731
  93. Sudhakar, M.P., Kumar, B.R., Mathimani, T. & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod. 228, pp. 1320–1333. DOI:10.1016/j.jclepro.2019.04.287
  94. Sutherland, D.L., McCauley, J., Labeeuw, L., Ray, P., Kuzhiumparambil, U., Hall, C., Doblin, M. & Nguyen, L.N. (2021). How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Curr Res Environ Sustain. 3:100050. DOI:10.1016/j.crsust.2021.100050
  95. Ta, D-T., Lin, C-Y., Ta, T-M-N. & Chu, C-Y. (2020). Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresour Techno.l 317:123986. DOI:10.1016/j.biortech.2020.123986
  96. Tarique, J., Sapuan, S.M., Khalina, A., Sherwani, S.F.K., Yusuf, J. & Ilyas, R.A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J Mater Res Technol. 13, pp. 1191–1219. DOI:10.1016/j.jmrt.2021.05.047
  97. Thanarasu, A., Periyasamy, K. & Subramanian, S. (2022). An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. Chemosphere, 287:131886. DOI:10.1016/j.chemosphere.2021.131886
  98. Thanigaivel, S., Priya, A.K., Dutta, K., Rajendran, S. & Vasseghian, Y. (2022) Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock. Fuel, 312:122827. DOI:10.1016/j.fuel.2021.122827
  99. Tuan Hoang, A. & Viet Pham, V. (2021). 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew Sustain Energy Rev. 148:111265. DOI:10.1016/j.rser.2021.111265
  100. Update AM (2017) Global wind report. Glob Wind Energy Council.
  101. Velusamy, K., Devanand, J., Senthil Kumar, P., Soundarajan, K., Sivasubramanian, V., Sindhu, J. & Vo, D.V.N. (2021). A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel, 306:121632. DOI:10.1016/j.fuel.2021.121632
  102. Wang, L., Liu, X. & Kolios, A. (2016). State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew Sustain Energy Rev. 64, pp. 195–210. DOI:10.1016/j.rser.2016.06.007
  103. Whangchai, K., Mathimani, T., Sekar, M., Shanmugam, S., Brindhadevi, K., Hung, T.V., Chinnathambi, A., Alharbi, S.A. & Pugazhendhi, A. (2021). Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. J Environ Chem Eng. 9:105482. DOI:10.1016/j.jece.2021.105482
  104. Wicker, R.J., Kumar, G., Khan, E. & Bhatnagar, A. (2021). Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem Eng J. 415:128932. DOI:10.1016/j.cej.2021.128932
  105. Wijayasekera, S.C., Hewage, K., Siddiqui, O., Hettiaratchi, P. & Sadiq, R. (2022). Waste-to-hydrogen technologies: A critical review of techno-economic and socio-environmental sustainability. Int J Hydrogen Energy, 47, pp. 5842–5870. DOI:10.1016/j.ijhydene.2021.11.226
  106. Wójcik, M. & Stachowicz, F. (2019). Influence of sewage sludge conditioning with use of biomass ash on its rheological characteristics. Arch Environ Prot. 45, pp. 92–102. DOI:10.24425/aep.2019.126425
  107. Wu, L., Wei, W., Song, L., Woźniak-Karczewska, M., Chrzanowski, L. & Ni, B.J. (2021). Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renew Sustain Energy Rev. 150:111448. DOI:10.1016/j.rser.2021.111448
  108. Xu, L., Zhang, Q. & Shi, X. (2019). Stakeholders strategies in poverty alleviation and clean energy access: A case study of China’s PV poverty alleviation program. Energy Policy, 135:111011. DOI:10.1016/j.enpol.2019.111011
  109. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C. & Li, Bin. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour Technol. 301:122804. DOI:10.1016/j.biortech.2020.122804
  110. Zhang, L., Wang, J., Niu, X. & Liu, Z. (2021). Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection. Appl Energy, 301:117449. DOI:10.1016/j.apenergy.2021.117449
  111. Zhao, S., Yao, L., He, H., Yiping, Z., Lei, H., Yujia, Z., Yajing, Y. & Jianli, J. (2019). Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag. Arch Environ Prot. 45, pp. 84–90. DOI:10.24425/aep.2019.127983
  112. Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C. & Lu, C. (2021). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresour Technol. 126595. DOI:10.1016/j.biortech.2021.126595
  113. Zhuang, X., Liu, J., Wang, C., Zhang, Q. & Ma, L. (2022). A review on the stepwise processes of hydrothermal liquefaction (HTL): Recovery of nitrogen sources and upgrading of biocrude. Fuel, 313:122671. DOI:10.1016/j.fuel.2021.122671
Go to article

Authors and Affiliations

E. Erdiwansyah
ORCID: ORCID
Asri Gani
1 5
ORCID: ORCID
Rizalman Mamat
2
M. Mahidin
ORCID: ORCID
K. Sudhakar
3
ORCID: ORCID
S.M. Rosdi
4
Husni Husin
1
ORCID: ORCID

  1. Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  2. College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
  3. Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India
  4. Politeknik Sultan Mizan Zainal Abidin, Terengganu
  5. Research Center of Palm Oil and Coconut, Universitas Syiah Kuala, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Juvenile fishes of the family Nototheniidae were recorded during fishing for krill eastwards of the Balleny Islands. The paper describes juveniles of the most abundant species. Trematomus bernacchii and Pagothenia brachysoma, their distribution and abundance. Also the correctness of assigning of some juveniles to the species T. bernacchii is discussed.

Go to article

Authors and Affiliations

Wiesław Slósarczyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present the Bayesian model selection procedure within the class of cointegrated processes. In order to make inference about the cointegration space we use the class of Matrix Angular Central Gaussian distributions. To carry out posterior simulations we use an alorithm based on the collapsed Gibbs sampler. The presented methods are applied to the analysis of the price – wage mechanism in the Polish economy.

Go to article

Authors and Affiliations

Justyna Wróblewska
Download PDF Download RIS Download Bibtex

Abstract

Wrecks lying on the seabed pose a risk to both shipping and the marine environment and the interests of the country in whose area the wreck is located. This problem has been recognized internationally and resulted in the enactment of the Nairobi International Convention on the Removal of Wrecks under the auspices of the IMO. Under the convention, it is the ship’s registered owner who is financially responsible for removing the wreck from the seabed. In addition, the convention imposes an obligation to carry insurance or provide other financial security to cover the cost of removing the wreck. The interested state party will be able to make direct claims to insurers for claims related to the removal of the wreck. The scope of the convention covers the exclusive economic zone in principle, but it also contains optional provisions allowing its provisions to be extended to the territorial waters of the interested states.
Go to article

Authors and Affiliations

Dominika Wetoszka
1
ORCID: ORCID

  1. Katedra Prawa Morskiego, WPiA UG
Download PDF Download RIS Download Bibtex

Abstract

The use of fly ash as a material for earth structures involves its proper compaction. Fly ash compaction tests have to be conducted on separately prepared virgin samples because spherical ash grains are crushed during compaction, so the laboratory compaction procedure is time-consuming and laborious. The aim of the study was to determine the neural models for prediction of fly ash compaction curve shapes. The attempt of applying the artificial neural networks type MLP was made. ANN inputs were new-created variables – principal components dependent on grain-size distribution (as D₁₀–D₉₀ and uniformity and curvature coefficients), compaction method, and fly ash specific density. The output vectors were presented by co-ordinates of generated compaction curve points. Each point (wᵢ, ρdi) was described by two independent ANNs. Using ANN-based modelling method, models which enable establishing the approximate compaction curve shape were obtained.

Go to article

Authors and Affiliations

K. Zabielska-Adamska
M.J. Sulewska

This page uses 'cookies'. Learn more