Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effects of the sintering holding time and cooling rate on the microstructure and mechanical properties of nanocrystalline Fe-Cr-C alloy were investigated. Nanocrystalline Fe-1.5Cr-1C (wt.%) alloy was fabricated by mechanical alloying and spark plasma sintering. Different process conditions were applied to fabricate the sintered samples. The phase fraction and grain size were measured using X-ray powder diffraction and confirmed by electron backscatter diffraction. The stability and volume fraction of the austenite phase, which could affect the mechanical properties of the Fe-based alloy, were calculated using an empirical equation. The sample names consist of a number and a letter, which correspond to the holding time and cooling method, respectively. For the 0A, 0W, 10A, and 10W samples, the volume fraction was measured at 5.56, 44.95, 6.15, and 61.44 vol.%. To evaluate the mechanical properties, the hardness of 0A, 0W, 10A, and 10W samples were measured as 44.6, 63.1, 42.5, and 53.8 HRC. These results show that there is a difference in carbon diffusion and solubility depending on the sintering holding time and cooling rate.
Go to article

Bibliography

[1] E . Yajima, T. Miyazaki, T. Sugiyama, H. Terajima, Trans. JIM 15, 173 (1974).
[2] E .C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri, Adv. Mater. Res. 217, 982 (2011).
[3] I . Yoshida, K. Yamamoto, K. Domura, K. Mizobe, K. Kida, Mater. Sci. Forum 867, 55 (2016).
[4] O . Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391 (2000).
[5] G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43, 438 (2003).
[6] D.S. Park, S.J. Oh, I.J. Shon, S.J. Lee, Arch. Metall. Mater. 63, 1479 (2018).
[7] S.G. Choi, J.H. Jeon, N.H. Seo, Y.H. Moon, I.J. Shon, S.J. Lee, Arch. Metall. Mater. 65, 1001 (2020).
[8] S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64, 649 (2011).
[9] Y. Sakuma, O. Matsumura, H. Takechi, Met. Trans. A 22, 489 (1991).
[10] Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53, 1224 (2013).
[11] K. Sugimoto, M. Misu, M. Kobayashi, H. Shirasawa, ISIJ Int. 33, 775 (1993).
[12] S.J. Lee, S. Lee, B.C. De Cooman, Int. J. Mater. Res. 104, 423 (2013).
[13] J.S. Benjamin, T.E. Volin, Met. Trans. 5, 1929 (1974).
[14] S.I. Cha, S.H. Hong, B.K. Kim, Mater. Sci. Eng. A 351, 31 (2003).
[15] H .W. Zhang, R. Gopalan, T. Mukai, K. Hono, Scr. Mater. 53, 863 (2005).
[16] G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953).
[17] B.L. Averbach, M. Cohen, Trans. AIME 176, 401 (1948).
[18] H . Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59, 4002 (2011).
[19] S.J. Oh, J.H. Jeon, I.J. Shon, S.J. Lee, J. Korean Powder Metall. Inst. 26, 389 (2019).
[20] I . Seki, K. Nagata, ISIJ Int. 45, 1789 (2005).
[21] G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527, 2759 (2010).
[22] F. Martin, C. Garcia, Y. Blanco, M.L. Rodriguez-Mendez, Mater. Sci. Eng. A 642, 360 (2015).
Go to article

Authors and Affiliations

Gwanghun Kim
1
ORCID: ORCID
Junhyub Jeon
1
ORCID: ORCID
Namhyuk Seo
1
ORCID: ORCID
Seunggyu Choi
1
Min-Suk Oh
1
ORCID: ORCID
Seung Bae Son
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The four-layer stack accumulative roll bonding (ARB) process using AA1050, AA5052 and AA6061 alloy sheets is performed up to 2 cycles without a lubricant at room temperature. The sample fabricated by the ARB is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 alloys are alternately stacked to each other. The changes of microstructure and mechanical properties with annealing for the-ARBed aluminum sheet are investigated in detail. The as-ARBed sheet shows an ultrafine grained structure, however the grain diameter is some different depending on the kind of aluminum alloys. The complex aluminum alloy still shows ultrafine structure up to annealing temperature of 250℃, but above 275℃ it exhibits a heterogeneous structure containing both the ultrafine grains and the coarse grains due to an occurrence of discontinuous recrystallization. This change in microstructure with annealing also has an effect on the change of the mechanical properties of the sample. Especially, the specimen annealed at 300℃ represents abnormal values for the strength coefficient K and work hardening exponent n value.
Go to article

Bibliography

[1] L. Ding, Y. Weng, S. Wu, R.E. Sansers, Z. Jia, Q. Liu, Mater. Sci. Eng. A651, 991 (2016).
[2] X. Fan, Z. He, W. Zhou, S. Yuan, J. Mater. Process. Tech. 228, 179 (2016).
[3] J.Y. Hwang, S.H. Lee, Korean J. Mater. Res. 29 (6), 392 (2019).
[4] S.H. Jo, S.H. Lee, Korean J. Mater. Res. 30 (5), 246 (2020).
[5] S.S. Na, Y.H. Kim, H.T. Son, S.H. Lee, Korean J. Mater. Res. 30 (10), 542 (2020).
[6] M. Jeong, J. Lee, J.H. Han, Korean J. Mater. Res. 29, 10 (2019).
[7] S.J. Oh, S.H. Lee, Korean J. Mater. Res. 28 (9), 534 (2018).
[8] E .H. Kim, H.H. Cho, K.H. Song, Korean J. Mater. Res. 27, 276 (2017).
[9] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scrip. Mater. 39, 1221 (1998).
[10] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47, 579 (1999).
[11] S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
[12] S.H. Lee, H. Utsunomiya, T. Sakai, Mater. Trans. 45, 2177 (2004).
[13] S.H. Lee, J. Kor. Inst. Met. & Mater. 43 (12), 786 (2005).
[14] S.H. Lee, C.H. Lee, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 6, 3661 (2006).
[15] S.H. Lee, C.H. Lee, S.J. Yoon, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 7, 3872 (2007).
[16] N. Takata, S.H. Lee, C.Y. Lim, S.S. Kim, N. Tsuji, J. Nanosci. and Nanotech. 7, 3985 (2007).
[17] S.H. Lee, H.W. Kim, C.Y. Lim, J. Nanosci. and Nanotech. 10, 3389 (2010).
[18] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban, Composites Sci. and Tech. 68, 2003 (2008).
[19] Ming-Che Chen, Chih-Chun Hsieh, Weite Wu, Met. Mater. Int. 13 (3), 201 (2007).
[20] G uanghui Min, J.M. Lee, S.B. Kang, H.W. Kim, Mater. Letters 60, 3255 (2006).
[21] S.H. Lee, C.S. Kang, Korean J. Met. Mater. 49 (11), 893 (2011).
[22] S.H. Lee, J.H. Kim, Korean J. Met. Mater. 51 (4), 251 (2013).
[23] H. Kuhn, D. Medlin, Mechanical Testing and Evaluation, ASM Handbook, ASM International 8, 71 (2000).
[24] G .E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGraw- Hill Book Company, London, 71 (2001).
Go to article

Authors and Affiliations

Sang-Hyeon Jo
1
ORCID: ORCID
Seong-Hee Lee
1
ORCID: ORCID

  1. Mokpo National University, Advanced Materials Science and Engineering, Muan-Gun, Jeonnam 58554, Korea

This page uses 'cookies'. Learn more