Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates.
Go to article

Authors and Affiliations

Sebastian Lepszy
Daniel Czaja
Tadeusz Chmielnak
Download PDF Download RIS Download Bibtex

Abstract

In the paper the results of measurements of CO2 absorption rate in aqueous potassium carbonate solutions containing cyclohexylamine, diethanolamine, 2-methylaminoethanol and triethylenetetramine as activators have been presented. Enhnancement mass transfer factors as well as reaction rate constants have been determined. Results show that among the tested activators triethylenetetramine and 2-methyl-aminoethanol may be used (instead of diethanolamine) as new promotors in a modified BENFLIELD process.

Go to article

Authors and Affiliations

Władysław Moniuk
Cezary Możeński
Grzegorz Bińczak
Zofia Mordecka
Download PDF Download RIS Download Bibtex

Abstract

At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.

Go to article

Bibliography

[1] D. Mitsouras, P. Liacouras, A. Imanzadeh, A.A. Giannopoulos, T. Cai, K.K. Kumamaru, and V.B. Ho. Medical 3D printing for the radiologist. RadioGraphics, 35(7):1965–1988, 2015. doi: 10.1148/rg.2015140320.
[2] F. Paulsen and J. Wasche. Sobotta Atlas of Human Anatomy, General anatomy and musculoskeletal system. Vol. 1, 2013.
[3] G.B. Kim, S. Lee, H. Kim, D.H. Yang, Y.H. Kim, Y.S. Kyung, and S.U. Kwon. Threedimensional printing: basic principles and applications in medicine and radiology. Korean Journal of Radiology, 17(2):182–197, 2016. doi: 10.3348/kjr.2016.17.2.182.
[4] J.W. Choi and N. Kim. Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Archives of Plastic Surgery, 42(3):267–277, 2015. doi: 10.5999/aps.2015.42.3.267.
[5] J.E. Loster, M.A. Osiewicz, M. Groch, W. Ryniewicz, and A. Wieczorek. The prevalence of TMD in Polish young adults. Journal of Prosthodontics, 26(4):284–288, 2017. doi: 10.1111/jopr.12414.
[6] A.S. Soliman, L. Burns, A. Owrangi, Y. Lee,W.Y. Song, G. Stanisz, and B.P. Chugh. A realistic phantom for validating MRI-based synthetic CT images of the human skull. Medical Physics, 44:4687–4694, 2017. doi: 10.1002/mp.12428.
[7] F. Heckel, S. Zidowitz, T. Neumuth, M. Tittmann, M. Pirlich, and M. Hofer. Influence of image quality on semi-automatic 3D reconstructions of the lateral skull base for cochlear implantation. In CURAC, 129–134, 2016.
[8] G. Budzik, T. Dziubek, and P. Turek. Basic factors affecting the quality of tomographic images. Problems of Applied Sciences, 3:77–84, 2015. (in Polish)
[9] S. Singare, C. Shenggui and N. Li. The Benefit of 3D Printing in Medical Field: Example Frontal Defect Reconstruction. Journal of Material Sciences & Engineering, 6(2):335, 2017. doi: 10.4172/2169-0022.1000335.
[10] A. Ryniewicz, K. Ostrowska, R. Knapik, W. Ryniewicz, M. Krawczyk, J. Sładek, and Ł. Bojko. Evaluation of mapping of selected geometrical parameters in computer tomography using standards. Przegląd Elektrotechniczny, 91(6):88–91, 2015. (in Polish) doi: 10.15199/48.2015.06.17.
[11] R. Kaye, T. Goldstein, D. Zeltsman, D.A. Grande, and L.P. Smith. Three dimensional printing: a review on the utility within medicine and otolaryngology. International Journal of Pediatric Otorhinolaryngology, 89:145-148, 2016. doi: 10.1016/j.ijporl.2016.08.007.
[12] G.T. Grant and P.C. Liacouras. Craniofacial Applications of 3D Printing. In: 3D Printing in Medicine: A Practical Guide for Medical Professionals. Rybicki, Frank J., Grant, Gerald T. (Eds.), Springer, Cham, Switzerland, pp. 43–50, 2017. doi: 10.1007/978-3-319-61924-8_5.
[13] T. Cai, F.J. Rybicki, A.A. Giannopoulos, K. Schultz, K.K. Kumamaru, P. Liacouras, and D. Mitsouras. The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Printing in Medicine, 1(1):2, 2015. doi: 10.1186/s41205-015-0003-3.
[14] T.Y. Hsieh, B. Cervenka, R. Dedhia, E.B. Strong, and T. Steele. Assessment of a patient- specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngology–Head & Neck Surgery, 144(7):574-579, 2018. doi: 10.1001/jamaoto.2018.0473.
[15] Y.W. Chen, C.T. Shih, C.Y. Cheng, and Y.C. Lin. The development of skull prosthesis through active contour model. Journal of Medical Systems, 41:164, 2017. doi: 10.1007/s10916-017-0808-2.
[16] J.S. Naftulin, E.Y. Kimchi, and S.S. Cash. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One, 10(8):e0136198, 2015. doi: 10.1371/journal.pone.0136198.
[17] A. Ryniewicz, K. Ostrowska, Ł. Bojko, and J. Sładek. Application of non-contact measurement methods for the evaluation of mapping the shape of solids of revolution. Przegląd Eletrotechniczny, 91(5):21–24, 2015. (in Polish). doi: 10.15199/48.2015.05.06.
[18] V. Favier, N. Zemiti, O.C. Mora, G. Subsol, G. Captier, R. Lebrun. and B. Gilles. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators. PloS One, 12(12): e0189486, 2017. doi: 10.1371/journal.pone.0189486.
[19] M.P. Chae,W.M. Rozen, P.G. McMenamin, M.W. Findlay, R.T. Spychal, and D.J. Hunter-Smith. Emerging applications of bedside 3D printing in plastic surgery. Frontiers in Surgery, 2:25, 2015. doi: 10.3389/fsurg.2015.00025.
[20] J.A. Sładek. Coordinate Metrology. Accuracy of Systems and Measurements. Springer, 2015.
[21] ISO 15530-3:2011: Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards.
[22] A. Marro, T. Bandukwala, and W. Mak. Three-dimensional printing and medical imaging: a review of the methods and applications. Current Problems in Diagnostic Radiology, 45(1): 2–9, 2016. doi: 10.1067/j.cpradiol.2015.07.009.
[23] A. Ryniewicz. Evaluation of the accuracy of the surface shape mapping of elements of biobearings in in vivo and in vitro tests. Scientific Works of the Warsaw University of Technology. Mechanics, 248:3–169, 2013. (in Polish).
[24] B.M. Mendez, M.V. Chiodo, and P.A. Patel. Customized “In-Office” three-dimensional printing for virtual surgical planning in craniofacial surgery. The Journal of Craniofacial Surgery, 26(5):1584–1586, 2015. doi: 10.1097/SCS.0000000000001768.
[25] J.J. de Lima Moreno, G.S. Liedke, R. Soler, H.E.D. da Silveira, and H.L.D. da Silveira. Imaging factors impacting on accuracy and radiation dose in 3D printing. Journal of Maxillofacial and Oral Surgery, 17(4):582–587, 2018. doi: 10.1007/s12663-018-1098-z.
[26] S.W. Park, J.W. Choi, K.S. Koh and T.S. Oh. Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. Journal of Oral and Maxillofacial Surgery, 73(8):1540–1553, 2015. doi: 10.1016/j.joms.2015.03.025.
[27] K.M. Day, P.M. Phillips, and L.A. Sargent. Correction of a posttraumatic orbital deformity using three-dimensional modeling. Virtual surgical planning with computer-assisted design, and three-dimensional printing of custom implants. Craniomaxillofacial Trauma and Reconstruction, 11(01):078–082, 2018. doi: 10.1055/s-0037-1601432.
[28] Y.C. Lin, C.Y. Cheng, Y.W. Cheng, and C.T. Shih. Skull repair using active contour models. Procedia Manufacturing, 11: 2164–2169, 2017. doi: 10.1016/j.promfg.2017.07.362.
[29] J.N. Winer, F.J. Verstraete, D.D. Cissell, S. Lucero, K.A. Athanasiou and B. Arzi. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Veterinary Surgery, 46(7):942–951, 2017. doi: 10.1111/vsu.12683.
[30] J.Y. Lim, N. Kim, J.C. Park, S.K. Yoo, D.A. Shin, and K.W. Shim. Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure. Child’s Nervous System, 33(9):1553–1562, 2017. doi: 10.1007/s00381-017-3486-y.
[31] W. Shui, M. Zhou, S. Chen, Z. Pan, Q. Deng, Y. Yao, H. Pan, T. He, and X. Wang. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. International Journal of Computer Assisted Radiology and Surgery, 12(1):13–23, 2017. doi: 10.1007/s11548-016-1461-9.
Go to article

Authors and Affiliations

Andrzej Ryniewicz
1 2
Wojciech Ryniewicz
3
Stanisław Wyrąbek
1
Łukasz Bojko
4

  1. Cracow University of Technology, Faculty of Mechanical Engineering, Poland.
  2. State University of Applied Science, Nowy Sącz, Poland.
  3. Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, Cracow, Poland.
  4. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Cracow, Poland.
Download PDF Download RIS Download Bibtex

Abstract

In Agricultural and Industrial Works FARMUTIL HS at Śmiłów were "cleaner production" program has been pul in practice, elimination of odors occurring during production of the meal and bone meal is of vital importance. Conccnlrations and emissions of lola! dust, organic substances in form of gas and vapors (as total organic carbon), hydrogen chloride, fluorine chloride, sulphur and nitrogen dioxides, carbon monoxide, heavy metals, polychlorinatcd dibcnzodioxins and dibcnzofurans were measured al emitters of the piani for thermal disposal of odors from the production of the meat and bone meal. The results of measurements and analyses of the composition of the flue gas emitted lo the atmosphere revealed that the concentration of harmful chemical compounds was low, lower than the permissible values defined in the standards.
Go to article

Authors and Affiliations

Zygmunt Kowalski
Anna Maślanka
Ewa Surowiec
Download PDF Download RIS Download Bibtex

Abstract

The tower at Lublin Castle, known as the donjon, is the only monument of Romanesque art on the eastern side of the Vistula River. The cylindrical, brick building is part of the Lublin Castle complex. During contemporary restoration work, the 13th-century walls were uncovered, making it possible to retrieve the original materials. The article presents the mineralogical, chemical and granulometric characteristics. The analytical methodology included: qualitative mineralogical analysis of the whole sample by X-ray diffraction (XRD); morphological studies with elemental evaluation and microanalysis of the binder by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS). Residue determination of hydrochloric acid-insoluble parts and their granulometric analysis were performed. This methodology enabled to determine the composition of the mortars. It was found that the tested mortars have a similar mineralogical structure, but slightly differ in the proportion of individual components, primarily aggregate fractions. The samples consist mainly of quartz, calcite, and silicates. Moreover, the lime binder of the mortars was shown to be microcrystalline in nature. The aggregate used in historical mortars predominantly consisted of quartz sand and minerals of the feldspar and silicate group. The condition of the mortars requires conservation interventions. The performed characterization of the historic mortars was important for designing compatible restoration mortars.
Go to article

Authors and Affiliations

Beata Klimek
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Department of Conservation and Built Heritage, Nadbystrzycka St. 40, 20-618 Lublin, Poland

This page uses 'cookies'. Learn more