Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Orthogonal frequency division multiplexing has been widely used in many radio frequency wireless communication standards as a preferable multicarrier modulation scheme. The modulated signals of a conventional orthogonal frequency division multiplexing system are complex and bipolar. In intensity-modulated direct detection optical wireless communications, transmitted signals should be real and unipolar due to non-coherent emissions of an optical light emitting diode. In this paper, different hybrid optical systems have been proposed to satisfy real and unipolar signals. Peak-to-average power ratio is one of the biggest challenges for orthogonal frequency division multiplexing-based visible light communications. They are based on a combination of non-linear companding techniques with spreading or precoding techniques. Simulation evaluation is performed under direct current-biased optical orthogonal frequency division multiplexing, asymmetrically clipped optical orthogonal frequency division multiplexing, and Flip-orthogonal frequency division multiplexing systems in terms of peak-to-average power ratio, bit error rate, and spectral efficiency. The proposed schemes are investigated to determine a scheme with a low peak-to-average power ratio and an acceptable bit error rate. MATLABTM software has been successfully used to show the validity of the proposed schemes.
Go to article

Bibliography

  1. El-Ganiny, M. Y., Khalaf, A. A. M., Hussein, A. I. & Hamed, H. F. A. A proposed preamble channel estimation scheme for flip FBMC-based indoor VLC systems. Opto-Electron. Rev. 30, e140859 (2022). https://doi.org/24425/opelre.2022.140859
  2. Mohammed, N. A., Elnabawy, M. M. & Khalaf, A. A. M. PAPR reduction using a combination between precoding andnon-linear com-panding techniques foraco-ofdm-based vlc systems. Opto-Electron. Rev. 29, 59–70 (2021). https://doi.org/24425/opelre.2021.135829
  3. Yu, T. C. et al. Visible light communication system technology review: Devices, architectures, and applications. Crystals 11, 1098 (2021). https://doi.org/10.3390/cryst11091098
  4. Lowery, A. J. Spectrally efficient optical orthogonal frequency division multiplexing. Trans. R. Soc. A. 378, 20190180 (2020). https://doi.org/10.1098/rsta.2019.0180
  5. Chen, R. et al. Visible Light Communication Using DC-Biased Optical Filter Bank Multi-Carrier Modulation. in 2018 Global LIFI Congress (GLC) 1–6 (2018). https://doi.org/10.23919/GLC.2018.8319094
  6. Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  7. Shaheen, I. A., Zekry, A., Newagy, F. & Ibrahim, R. Performance evaluation of PAPR reduction in FBMC system using nonlinear companding transform. ICT Express 5, 41–46 (2018). https://doi.org/10.1016/j.icte.2018.01.017
  8. Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM sys Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  9. Ahmad, R. & Srivastava, A. PAPR reduction of OFDM signal through DFT precoding and GMSK pulse shaping in indoor VLC. IEEE Access 8, 122092–122103 (2020). https://doi.org/1109/ACCESS.2020.3006247
  10. Darwesh, L. & Kopeika, N. Improved performance in the detection of aco-ofdm modulated signals using deep learning modules. Sci. 10, 8380 (2020). https://doi.org/10.3390/app10238380
  11. Offiong, F. B., Sinanović, S. & Popoola, W. O. Pilot-aided frame synchronization in optical OFDM systems. Sci. 10, 4034 (2020). https://doi.org/10.3390/app10114034
  12. Freag, H., Hassan, E. S., El-Dolil, S. A. & Dessouky, M. I. New hybrid PAPR reduction techniques for OFDM-based visible light communication systems. Opt. Commun. 39, 427–435 (2018). https://doi.org/10.1515/joc-2017-0002
  13. Jiang, T. et al. Investigation of DC-Biased optical OFDM with precoding matrix for visible light communications: Theory, simulations, and experiments. IEEE Photon. J. 10, 1–6 (2018). https://doi.org/10.1109/JPHOT.2018.2866952
  14. Wang, Z. & Chen, S. Grouped DFT precoding for PAPR reduction in visible light OFDM systems. J. Electron. Commun. Comput. Eng. 6, 710–713 (2015). https://ijecce.org/administrator/components/com_jresearch/files/publications/IJECCE_3674_Final.pdf
  15. Hesham, H. & Ismail, T. Hybrid NOMA-based ACO-FBMC/OQAM for next-generation indoor optical wireless communications using LiFi technology. Quant. Electron. 54, 201 (2022). https://doi.org/10.1007/s11082-022-03559-1
  16. Fernando, N., Hong, Y. & Viterbo, E. Flip-OFDM For Optical Wireless Communications. in 2011 IEEE Inormation Theory Workshop 5–9 (2011). https://doi.org/10.1109/ITW.2011.6089566
  17. Bahaaelden, M. S., Ortega, B., Perez-Jimenez, R. & Renfors, M. Efficiency analysis of a truncated flip-FBMC in burst optical transmission. IEEE Access 9, 100558–100569 (2021). https://doi.org/1109/ACCESS.2021.3096660
  18. Baig, I., Ul Hasan, N., Zghaibeh, M., Khan, I. U. & Saand, A. S. A DST Precoding Based Uplink NOMA Scheme for PAPR Reduction in 5G Wireless Network. in 2017 7th Int. Conference on Modelling Simulation, Applied Optimization (ICMSAO) 1–4 (2017). https://doi.org/10.1109/ICMSAO.2017.7934861
  19. Bardale, R. S. & Yerigiri, V. V. Analysis of DHT-spread ACO-OFDM scheme using binary-psk modulation for PAPR reduction. J. Electron. Commun. Comput. Eng. 12, 22–26 (2017). https://doi.org/10.9790/2834-1206022226
  20. El-Ganiny, M. Y., Khalaf, A. A. M., Hussein, A. I. & Hamed, H. F. A. A preamble based channel estimation methods for FBMC waveform: A comparative study. Procedia Comput. Sci. 182, 63–70 (2021). https://doi.org/10.1016/j.procs.2021.02.009
  21. Saju, S. C. & George, A. J. Comparison of ACO-OFDM and DCO-OFDM in IM / DD Systems. J. Eng. Res. Technol. 4, 1315–1318 (2015). https://www.ijert.org/research/comparison-of-aco-ofdm-and-dco-ofdm-in-imdd-systems-IJERTV4IS041422.pdf
  22. Kumar, M. & Purohit, M. Comparative Study of FLIP-OFDM and ACO-OFDM for Unipolar Communication System. J. Innov. Sci. Technol. 1, 144–148 (2014). https://www.ijiset.com/v1s2/IJISET_V1_I2_25.pdf
  23. Shaheen, I. A., Zekry, A., Newagy, F. & Reem, I. Combined DHT precoding and a-law companding for PAPR reduction in FBMC / OQAM signals. J. Comput. Academic Res. 6, 31–39 (2017). http://www.meacse.org/ijcar/archives/116.pdf
  24. Tsonev, D. & Haas, H. Avoiding Spectral Efficiency Loss in Unipolar OFDM for Optical Wireless Communication. in 2014 IEEE International Conference on Communications (ICC) 3336–3341 (2014). https://doi/org/10.1109/ICC.2014.6883836
  25. El-Ganiny, M. Y., ElAttar, H. M., Dahab, M. A. A. & Elgarf, T. A. Improved Coding Gain of Clipped OFDM Signal Using Avalanche Effect of AES Block Cipher. in 2017 IEEE Pacific Rim Conference on Communicationm Compututers and Signal Processing (PACRIM) 1–6 (2017). https://doi.org/1109/PACRIM.2017.8121910
  26. Feng, S., Feng, H., Zhou, Y. & Li, B. Low-complexity hybrid optical OFDM with high spectrum efficiency for dimming compatible VLC Appl. Sci. 9, 3666 (2019). https://doi.org/10.3390/app9183666
  27. Acolatse, K., Bar-Ness, Y. & Wilson, S. K. Novel techniques of single-carrier frequency-domain equalization for optical wireless communications. EURASIP J. Adv. Signal Process. 2011, 393768 (2011). https://doi.org/10.1155/2011/393768
  28. Pradhan, J., Kappala, V. K., Das, S. & Holey, P. Performance analysis of ACO-OFDM NOMA for VLC communication. Quant. Electron. 54, 531 (2022). https://doi.org/10.1007/s11082-022-03939-7
  29. Ibrahim, A., Prat, J. & Ismail, T. Asymmetrical clipping optical filter bank multi-carrier modulation scheme. Quant. Electron. 53, (2021). https://doi.org/10.21203/rs.3.rs-248482/v1
  30. Zhou, J. & Zhang, W. Information Rates of Unipolar OFDM Schemes in Gaussian Optical Intensity Channel. in 2017 9th Int. Conference on Wirelss Communication and Signal Processing (WCSP) 1–7 (2017). https://doi.org/1109/WCSP.2017.8170888
  31. Ahmed, F. et al. DFT-spread OFDM with quadrature index modulation for practical VLC systems. Express 29, 33027–33036 (2021). https://doi.org/10.1364/OE.441650
  32. Mhatre, K. & Khot, U. P. Efficient selective mapping PAPR reduction technique. Procedia Comput. Sci. 45, 620–627 (2015). https://doi.org/10.1016/j.procs.2015.03.117
  33. Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. J. Electron. Lett. 8, 241–255 (2020). https://doi.org/10.1080/21681724.2019.1600051
Go to article

Authors and Affiliations

Mohamed Y. El-Ganiny
1
Ashraf A. M. Khalaf
2
ORCID: ORCID
Aziza I. Hussein
3
ORCID: ORCID
Hesham F. A. Hamed
4

  1. Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Sharqia, Egypt
  2. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt
  3. Electrical and Computer Engineering Department, Effat University, Jeddah, Kingdom of Saudi Arabia
  4. Department of Telecommunications Engineering, Egyptian Russian University, Badr City, Egypt

This page uses 'cookies'. Learn more