Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Looking for alternative sources of energy to generate electricity has been a hot topic for society for a very long time. The need to replace current energy resources such as fuel, oil, and gas is increasing, and the replacement comes from energy obtained from the wind, sun, and sea waves. In many cases, valuable raw materials can be obtained in addition to energy production, while having a significant environmental effect simultaneously.
The shortage of energy and raw material resources in many countries stimulates the growth of interest in all potential sources of energy – solar, wind, wave, tidal – has lead to accelerating the demand for oil and gas, shale gas, as well as the expansion of the areas for the cultivation of technical crops for biofuels. Classical energy resources like oil, gas and coal are serious polluters of the natural environment. Especially harmful is the release of carbon dioxide and sulfur oxides during the exploitation of these resources.
A significant energy raw material potential of non-traditional resources lies in the waters and bottom of the Black Sea, which is a natural geobiotechnological reactor, capable of producing a variety of energy raw resources.
This paper discusses the use of hydrogen sulfide available in the Black Sea waters to produce energy and useful industrial products and proposes the respective. The technology also has an ecological effect in terms of the purification of the hydrogen sulfide pool. The paper also discusses some technologies for the separation of hydrogen sulfide to hydrogen and sulfur. An estimation of the heat value of hydrogen sulfide in the water of the Black Sea is also presented.
Go to article

Authors and Affiliations

Iskra Simova
1
Rositsa Velichkova
1
Milka Uzunova
2
Radostina Angelova
1
Peter Stankov
1
Koycho Atanasov
3

  1. Hydroaerodynamic and Hydraulic Machines, Technical University of Sofia, Bulgaria
  2. ECAM-EPMI, France
  3. Technical University of Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

As a result of the development of industrial organic synthesis, the output of secondary processes in oil processing is becoming increasingly diverse. Production volume is a nodal indicator that is limited by the available production capacity, equipment configuration and the monetary equivalent of energy costs. In order to determine the technological potential and cost of produced petroleum products, it is necessary to create a complex that includes all stages of production. The most important criterion for evaluating the energy efficiency of an oil refinery is the relative energy consumption, which depends on its complexity. This criterion can be presented as a set of the different types of energy resources used in the course of production and applied to the total production. For this purpose, the energy resources invested in the given technology should be referred to a finished product or raw material. The peculiarity of oil refineries is that, due to the variety of oil derivatives, energy consumption, as a set of different installations, is much more appropriate to relate not to individual target products but to the amount of processed oil. In practice, all types of energy carriers must be converted to an equivalent value. This paper provides an in-depth analysis of the energy costs of oil refineries. The collection of energy flows of different types and dimensions is the subject of the present study. Based on this, a method is presented that allows a comparison of the energy efficiency of refineries with different capacity and configuration of crude oil processing stages based on the energy index and the equivalent distillation performance.
Go to article

Authors and Affiliations

Konstantin Vasilev Kostov
1
ORCID: ORCID
Ivan Ivov Ivanov
1
ORCID: ORCID
Koycho Tonchev Atanasov
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Manufacturing and Thermal Engineering, Technical University of Sofia, Faculty of Engineering and Pedagogy of Sliven, Bulgaria

This page uses 'cookies'. Learn more