Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The presented paper concerns a novel concept of hybrid piezoelectric motor based on electroactive lubrication principle. Its structure is combined of quasi-static and resonance piezoelectric actuators, synchronizing their work to generate the rotary movement. The hybrid motor topology is compared to the existing piezoelectric motors, regarding its field of applications in embedded systems with very high security requirements. The electroactive lubrication principle is briefly presented with regards to optimization of the hybrid motor. The performance principle of the hybrid motor is described in terms of its working cycle. The assembling process of the prototype hybrid motor is briefly explained with emphasis put on the frequency and impedance tuning of the applied quasi-static and resonance piezoelectric actuators. Next, the hybrid motor power supply system is described and chosen measured performance characteristics are presented. Finally, conclusions concerning the features of the tested prototype hybrid motor and possible solutions of the faced issues, during assembling and testing, are presented.

Go to article

Authors and Affiliations

Jean-Francois Rouchon
Dominique Harribey
Duc-Hoan Tran
Roland Ryndzionek
Łukasz Sienkiewicz
Mieczysław Ronkowski
Michal Michna
Grzegorz Kostro
Download PDF Download RIS Download Bibtex

Abstract

The article presents the Power Hardware in the Loop (PHIL) approach for an autonomous power system analysis based on the synchronous generator model incorporating magnetic saturation effects. The model was prepared in the MATLAB/Simulink environment and then compiled into the C language for the PHIL platform implementation. The 150 kVA bidirectional DC/AC commercial-grade converter was used to emulate the synchronous generator. It was controlled by the real-time simulation control unit with the prepared synchronous generator model incorporating magnetic saturation effects. The proposed approach was validated on the 125 kVA synchronous generator connected to the active and reactive loads of different values for the steady-state and the transient-state performance studies.
Go to article

Authors and Affiliations

Filip Kutt
1
ORCID: ORCID
Łukasz Sienkiewicz
1
ORCID: ORCID
Szymon Racewicz
2
ORCID: ORCID
Michał Michna
1
ORCID: ORCID
Roland Ryndzionek
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Electrical and Control Engineering ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
  2. University of Warmia and Mazury in Olsztyn, Faculty of Technical Science ul. Oczapowskiego 11, 10-710 Olsztyn, Poland

This page uses 'cookies'. Learn more