Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Czym jest smog i z czego się składa? Jak powstaje? Jak zadymiona jest Polska w stosunku do innych krajów Europy?

Go to article

Authors and Affiliations

Jacek Wojciech Kamiński
Joanna Strużewska
Download PDF Download RIS Download Bibtex

Abstract

What is smog, what does it consist of, and where does it come from? How badly polluted is the air in Poland in relation to other countries in Europe?

Go to article

Authors and Affiliations

Jacek Wojciech Kamiński
Joanna Strużewska
Download PDF Download RIS Download Bibtex

Abstract

This study used PM10 and PM2.5 measurements from the State Environmental Monitoring stations in Warsaw and its suburban areas. Analysis of variability characteristics at the traffic and urban background stations was carried out for 2016-2021. A six-year analysis (2016-2021) of air quality in Warsaw, Poland, focusing highlights the persistent impact of transportation on particulate matter concentrations. Comparing a city centre traffic station with urban background locations reveals consistently higher PM10 concentrations at the traffic station throughout the year, with an annual traffic-related increase of 12.6 μg/m³ (32%). PM2.5 concentrations at the traffic station are also consistently about 1.5 μg/m³ (7%) higher. For monthly averages, the highest PM10 concentrations at the traffic station were noted in March, which may be related to the resuspention of sand and salt left over from winter snow removalp rocesses. In the case of PM2.5, the typical annual cycle with maximum concentrations in winter and minimum concentrations in summer was not observed. Diurnal variability patterns show elevated PM10 concentrations at the traffic station from 8:00 a.m. to 10:00 p.m., attributed to the resuspension process. PM2.5 patterns exhibit a smaller amplitude at the traffic station, with nighttime accumulation due to inflow. This study emphasizes the lasting impact of transportation on air quality, providing insights into pollution control strategies in urban areas.
Go to article

Bibliography

  1. Cembrzyńska, J., Krakowiak, E. & Brewczyński, P. Z. (2012). Air pollution with suspended dust PM10 and PM2.5 in conditions of strong anthropopressure on the example of the city of Sosnowiec. Medycyna Środowiskowa. 15, 4, pp. 31-38.(in Polish)
  2. Domański, B. (2006). Polish industry compared to the industry of Central and Eastern Europe. Studies of the Industrial Geography Commission of the Polish Geographical Society, 8, pp. 27–36. DOI:10.24917/20801653.8.2. (in Polish)
  3. Godłowska, J. (2019). The impact of meteorological conditions on air quality in Krakow. Comparative research and an attempt at a modeling approach, Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy Warszawa 2019. (in Polish)
  4. Główny Inspektorat Ochrony Środowiska. (2022). Annual assessment of air quality in the Masovian Voivodeship. Provincial report for the year 2021. (in Polish)
  5. Gustafsson, M., Blomqvist, G., Gudmundsson, A., Dahl, A., Jonsson, P. & Swietlicki, E. (2009). Factors influencing PM10 emissions from road pavement wear, Atmospheric Environment, 43, 31, pp. 4699-4702. DOI:10.1016/j.atmosenv.2008.04.028.
  6. Harrison, R.M., Vu, T.V., Jafar, H. & Shi, Z. (2021). More mileage in reducing urban air pollution from road traffic. Environ Int. 149, 106329. DOI:10.1016/j.envint.2020.106329.
  7. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration, Archives of Environmental Protection 43, 1 pp. 48–64. DOI:10.1515/aep-2017-0005.
  8. Jagiełło, P., Strużewska, J., Jeleniewicz, G. & Kamiński, J.W. (2023). Evaluation of the Effectiveness of the National Clean Air Programme in Terms of Health Impacts from Exposure to PM2.5 and NO2 Concentrations in Poland, International Journal of Environmental Research and Public Health, 20, 1, 530, pp. 1-16. DOI:10.3390/ijerph20010530
  9. Juda-Rezler, K., Zajusz-Zubek, E., Reizer, M., Maciejewska, K. & Klejnowski, K. (2020). Bioavailability of trace elements in atmospheric particulate matter PM2.5 during winter episodes observed in Warsaw, [In:] Current trends in air and climate protection - emission control, monitoring, forecasting and mitigation. Sówka Izabela, Gaj Kazimierz, Miller Urszula (eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, p.83.
  10. Kaminski, J.W., Neary, L. Struzewska, J. & McConnell J.C. (2011). Multiscale, Atmospheric Chemistry Modelling with GEMAQ. [In:] Baklanov, A., Alexander, M. and Sokhi, R. (eds) Integrated Systems of MesoMeteorological and Chemical Transport Models. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-13980-2_4.
  11. Kupiainen, K., Ritola, R., Stojiljkovic, A., Pirjola, L., Malinen, A. & Niemi, J. (2016). Contribution of mineral dust sources to street side ambient and suspension PM10 samples, Atmospheric Environment, 147, pp. 178-189. DOI:10.1016/j.atmosenv.2016.09.059.
  12. Majewski, G. (2005). Air pollution with particulate matter PM10 in Ursynów and its relation to meteoroloical conditions. Warsaw. Scientific Review. Inżynieria i Kształtowanie Środowiska. pp. 210-223.
  13. Majewski, G., Rogula-Kozłowska W., Rozbicka, K., Rogulska-Kopiec, P., Mathews, B. & Brandyk, A. (2018). Concentration, Chemical Composition and Origin of PM1: Re-sults from the First Long-term Measurement Campaign in Warsaw (Poland), Aerosol and Air Quality Research, 18, 3, pp. 636-654. DOI:10.4209/aaqr.2017.06.0221.
  14. Markowicz K.M., Zawadzka O., Posyniak M. & Uscka-Kowalkowska J. (2019). Long-term variability of aerosol optical depth in the Tatra Mountains region of the Central Europe, J. Geophys. Res., 124 (6), pp. 3464-3475. DOI:10.1029/2018JD028846.
  15. Osowski, J. (2023). Ponad 2,1 mln aut zarejestrowanych w Warszawie. Samochodoza większa niż w Berlinie czy Nowym Jorku, (https://warszawa.wyborcza.pl/warszawa/7,54420,29430864,ponad-2-1-mln-aut-zarejestrowanych-w-warszawie-i-jeszcze-jedno.html (25.11.2023)).
  16. Pirjola, L., Kupiainen, K.J., Perhoniemi, P., Tervahattu, H. & Vesala, H. (2009). Non-exhaust emission measurement system of the mobile laboratory SNIFFER, Atmospheric Environment, 43, 31, pp. 4703-4713. DOI:10.1016/j.atmosenv.2008.08.024.
  17. Polednik, B. (2021). Air quality changes in a Central European city during COVID-19 lockdown, Sustainable Cities and Society, 73, 103096. DOI:10.1016/j.scs.2021.103096.
  18. Smith, T.W., Axon, C.J & Darton, R.C. (2013). The impact on human health of car-related air pollution in the UK, 1995-2005, Atmospheric Environment, 77, pp. 260-266. DOI:10.1016/j.atmosenv.2013.05.016.
  19. Wojtal, R. (2018). Air pollution in cities in terms of car traffic, Urban and Regional Transport 01/2018, pp. 12-17.
  20. Zhang, K. & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic, Science of The Total Environment, 450-451, pp. 307-316. DOI:10.1016/j.scitotenv.2013.01.074.
  21. Zicheng, W., Huayou, C., Jiaming, Z. & Zhenni, D. (2022). Daily PM2.5 and PM10 forecasting using linear and nonlinear modelling framework based on robust local mean decomposition and moving window ensemble strategy, Applied Soft Computing, 114, 108110. DOI:10.1016/j.asoc.2021.108110.
Go to article

Authors and Affiliations

Aleksandra Starzomska
1
ORCID: ORCID
Joanna Strużewska
1

  1. Institute of Environmental Protection—National Research Institute, Poland

This page uses 'cookies'. Learn more