Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Authors
  • Keywords
  • Date
  • Type

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The current study is the first phylogenetic and secondary RNA structure analysis of Dactylogyrus species parasitising gill filaments of Iraqi cyprinid fishes. Most previous phylogenetic studies have targeted on primary DNA sequence data. Nevertheless, RNA secondary configuration is principally helpful in systematics since they comprise features that do not appear in the primary sequence and provide morphological information. The primary objective was molecular-based identification of Dactylogyrids species using evolutionary tree and secondary RNA structure prediction. A total of 681 fish were collected from the Lesser Zab River in the northeast of Iraq in the sub-district of Altun-Kopru from August 2016 to September 2017 and brought to the Zoology Research Laboratory, Salahaddin University-Erbil, Iraq. All fish were classified as 18 cyprinid species. The species of Dactylogyrus were identified by the 28S rDNA subunit using PCR and sequencing methods, and the obtained nucleotide sequences were then compared with the available GenBank sequences. Phylogenetic relationships were concluded using Neighbour-Joining (NJ), Maximum Likelihood (ML), and Minimum Evolution (ME) methods. The results justify the validation of 11 Dactylogyrus species (three of them were newly recorded in Iraq). Additionally, out of nine infected fish species, seven of them were regarded as a new host for Dactylogyrus species. Secondary RNA configuration prediction using minimum free energy was considered as a hopeful tool for species identification. This was considered the first comprehensive phylogenetic study in the area. It was concluded that PCR sequencing, phylogenetic and secondary RNA analysis were proper molecular methods for identifying Dactylogyrids species on the gills of fishes.

Przejdź do artykułu

Autorzy i Afiliacje

Q.M.K. Koyee
S.M.A. Abdullah

Abstrakt

Theileriosis is a significant hemoprotozoal disease of domestic and wild ruminants in tropical and subtropical regions of the world. Ovines are mainly infected by T. ovis and T. lestoquardi, causing economic losses. Due to data scarceness in the Sulaymaniyah governorate, north of Iraq, this study was conducted to investigate subclinical theileriosis using microscopic examination and PCR. A total of 450 blood samples were collected from eight districts in Sulaymaniyah. The samples were randomly taken from clinically healthy sheep in 40 farms from April to Octo- ber 2017. Following the organism verification, PCR products were sequenced and aligned. The study results revealed that 76.0% (n=342) and 58.0% (n=261) of the examined samples were positive for Theileria spp. by PCR and microscopic examination. T. ovis was reported in 76.0% (n=342) of all tested samples, while T. lestoquardi was present in 28.4% (n=97) of the positive specimens. Higher infection rates were observed during July and August. Analysis of the 18S rRNA gene partial sequence of the studied isolates with corresponding sequences in GenBank showed high degrees of identities with T. ovis and T. lestoquardi isolates reported from Iraq and other countries. T. uilenbergi and T. sp. OT3 were detected only through analysis of obtained partial sequences from Theileria-positive samples. Following analysis, T. uilenbergi isolates represented a high homology degree with Theileria isolates from Iraq and China. The newly identified T. sp. OT3 showed >99% identity with T. sp. OT3 isolates of Chinese and Spanish origin.
Przejdź do artykułu

Autorzy i Afiliacje

S.H. Abdullah
1
S.A. Ali
2

  1. Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Madame Mitterrand, Sulaymaniyah 46001, Kurdistan Region, Iraq
  2. Department of Microbiology, College of Medicine, University of Sulaimani, Madame Mitterrand, Sulaymaniyah 46001, Kurdistan Region, Iraq

Abstrakt

Flexible and rigid road pavement deteriorates over time and needs high-performance patching repair materials. Cold mix asphalt patching is an easy and inexpensive repair material to repair potholes and other damaged roads. However, the repaired road pavement fails because it doesn’t have adequate compressive and bonding strength to the substrate. Thus, this research uses high-performance geopolymer repair materials to patch against road pavement potholes substrate. Geopolymer repair materials could improve the bonding strength, making them suitable for road repair purposes. For making geopolymer repair materials, the main materials used were high calcium aluminosilicate source materials such as fly ash, sodium hydroxide, sodium silicate, and water. This study tested the compressive and bonding strength of geopolymer repair materials after 1, 7, 14, and 28 days. This study found that the compressive strength of 90 g of alkali activator was the highest, at 37.0 MPa. The bonding strength improved gradually from day 1 to day 14, and then considerably on day 28. The compressive strength and bonding strength both increase in direct proportion to the amount of alkali activator present. Alkali activator is optimal at 90 grams for compressive strength and bonding strength of geopolymer repair materials.
Przejdź do artykułu

Autorzy i Afiliacje

W.W.A. Zailani
1
ORCID: ORCID
N.M. Apandi
1
ORCID: ORCID
M.M.A. Abdullah
2
ORCID: ORCID
M.F.M. Tahir
2
ORCID: ORCID
I Nengah Sinarta
3
Komang Ayu Ni Agustini
3
ORCID: ORCID
S. Abdullah
1
ORCID: ORCID

  1. Universiti Teknologi MARA, College of Engineering, School of Civil Engineering, 40450 Shah Alam, Selangor, Malaysia
  2. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Kangar, Perlis, Malaysia
  3. Warmadewa University, Faculty of Engineering and Planning, Den Pasa r, 80239, Indonesia

Abstrakt

Ultra-High Molecular Weight Polyethylene (UHMWPE) polymers have been used in biomedical applications due to its biocompatibility, durability, toughness and high wear resistance. To enhance the mechanical properties, various types of minerals are commonly utilized as fillers in UHMWPE. One of the minerals is dolomite, which has been recognized as a valuable mineral with versatile applications, particularly in the field of biomedical applications. This paper presents the tensile properties of UHMWPE composites that filled with dolomite and treated-dolomite at various filler loading (i.e., 1-5 wt.%). Nitric acid and diammonium phosphate were used to treat the dolomite. From the results, the peaks of the FTIR spectrum displays carbonate (CO3–2), phosphate (PO4–3) and hydroxyl (OH) groups in the ct-dolomite powder sample while the XRD pattern reveals that using dolomite treated with 1M nitric acid resulted in the presence of calcium hydroxide phosphate (Ca10(PO4)5(OH)) and MgO. For tensile strength, UHMWPE/ct-dolomite composites show better tensile strength than the pure UHMWPE composites. Treated improve the dolomite filler and resulted in significantly better matrix-filler interfacial interactions and improve the properties.
Przejdź do artykułu

Autorzy i Afiliacje

S.F.A. Abdullah
1
ORCID: ORCID
S.S. Md Saleh
1
N.F Mohammad
ORCID: ORCID
S.N. Syed Mahamud
1
ORCID: ORCID
M.F. Omar
2
ORCID: ORCID
H.Md Akil
3
ORCID: ORCID
B.P Chang
ORCID: ORCID
H.R Saliu
ORCID: ORCID
N.H. Rostam
2
ORCID: ORCID
J. Gondro
4

  1. Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia; University Malaysia Perlis, Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoTech), 01000 Kangar, Perlis, Malaysia
  2. Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  3. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  4. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Depa rtment of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Polandomposites

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji