Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents verification of a peak detection method cooperating with infrared radiation detector module applications. The work has been divided into parts including SPICE simulations and presentation of results obtained with the constructed prototype. The design of the peak detector dedicated to applications with very short pulses requires a different approach than that for standard solutions. It is mainly caused due to the ratio of pulse width and time period. In the described application this ratio is less than 10%. The paper shows testing of an analogue circuit which is capable to be inserted in these applications.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
Janusz Mikołajczyk
Dariusz Szabra
Artur Prokopiuk
Zbigniew Bielecki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis and practical study of the temperature and pressure influence on a nondispersive infrared (NDIR) sensor for measuring the concentration of carbon dioxide in human breath. This sensor is used for monitoring patients’ carbon dioxide (CO2) in the exhaled air. High precision and accuracy of CO2 concentration measurements are essential in air sampling systems for breath analysers. They, however, require an analysis of the influence of the human exhaled air pressure and temperature on the NDIR CO2 sensor. Therefore, analyses of the changes in concentration were carried out at a pressure from 986 mbar to 1027 mbar and a temperature from 20°C to 36°C. Finally, corresponding correction coefficients were determined which allow to reduce the relative uncertainty of CO2 sensor measurements results from 19% to below 5%.
Go to article

Bibliography

[1] Chludzinski, T.,&Kwiatkowski, A. (2020). Exhaled breath analysis by resistive gas sensors. Metrology and Measurement Systems, 27(1), 81–89. http://dx.doi.org/10.24425/mms.2020.131718
[2] Bielecki, Z., Stacewicz, T., Wojtas, J., Mikołajczyk, J., Szabra, D., & Prokopiuk, A. (2018). Selected optoelectronic sensors in medical applications. Opto-Electronics Review, 26(2), 122–133. https://doi.org/10.1016/j.opelre.2018.02.007
[3] Buszewski, B., Kęsy, M., Ligor, T., & Amann, A. (2007). Human exhaled air analytics: biomarkers of diseases. Biomedical Chromatography, 21(6), 553–566. https://doi.org/10.1002/bmc.835
[4] Schubert, J. K., Spittler, K. H., Braun, G., Geiger, K.,& Guttmann, J. (2001). CO2-controlled sampling of alveolar gas in mechanically ventilated patients. Journal of Applied Physiology, 90(2), 486–492. https://doi.org/10.1152/jappl.2001.90.2.486
[5] Levitzky, M. G. (2013). Pulmonary Physiology (8th ed.): McGraw-Hill Education.
[6] Singh, O. P., & Malarvili, M. B. (2018). Review of infrared carbon-dioxide sensors and capnogram features for developing asthma-monitoring device. Journal of Clinical and Diagnostic Research, 12(10). https://doi.org/10.7860/JCDR/2018/35870.12099
[7] Singh, O. P., Howe, T. A., & Malarvili, M. B. (2018). Real-time human respiration carbon dioxide measurement device for cardiorespiratory assessment. Journal of Breath Research, 12(2), 026003. https://doi.org/10.1088/1752-7163/aa8dbd
[8] Chen, H.-Y., & Chen, C. (2019). Development of a Breath Analyzer for O2 and CO2 Measurement. The Open Biomedical Engineering Journal, 13(1), 21–32. https://doi.org/10.2174/1874120701913010021
[9] Mikołajczyk, J., Bielecki, Z., Stacewicz, T., Smulko, J.,Wojtas, J., Szabra, D., Lentka, Ł., Prokopiuk, A., & Magryta, P. (2016). Detection of gaseous compounds with different techniques. Metrology and Measurement Systems, 23(2). https://doi.org/10.1515/mms-2016-0026
[10] Prokopiuk, A. (2017). Optoelectronics sensors of hydrocarbons based on NDIR technique. Proceedings of SPIE – The International Society for Optical Engineering, 10455. https://doi.org/10.1117/12.2282779
[11] Hamamatsu. (2021, September 2). Mid infrared LED L13201-0430M. http://www.hamamatsu.com.cn/UserFiles/upload/file/20190527/l13201_series_kled1069e.pdf
[12] Pike Technologies. (2021). Stainless Steel Short-Path Gas Cells. https://www.piketech.com/product/stainless-steel-short-path-gas-cells/
[13] Elliot Scientific. (2021, September 2). BPF 4260-120 Iridian mid-IR Filter. https://elliotscientific.com/Iridian-BPF-4260-120
[14] Vigo. (2021, September 2). PV-3TE-5. https://vigo.com.pl/produkty/pv-3te/
[15] Richards, P. L. (1994). Bolometers for infrared and millimeter waves. Journal of Applied Physics, 76(1), 1–24. https://doi.org/10.1063/1.357128
[16] American Thoracic Society. (2005). ATS / ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. American Journal of Respiratory and Critical Care Medicine, 171(8), 912–930. https://doi.org/10.1164/rccm.200406-710ST
[17] Mansour, E., Vishinkin, R., Rihet, S., Saliba,W., Fish, F., Sarfati, P., & Haick, H. (2020). Measurement of temperature and relative humidity in exhaled breath. Sensors and Actuators B: Chemical, 304, 127371. https://doi.org/10.1016/j.snb.2019.127371
[18] UTECH Co., Ltd. (2021, September 2). UT100C Handheld Capnograph Vital Signs Monitor. https://www.chinautech.com/ut100c-capnograph-monitor-and-pulse-oximeter-etco2-spo2-pulse-rate-. html
[19] Memmert. (2021, September 2). Universal oven UF30. https://www.memmert.com/products/heatingdrying-ovens/universal-oven/UF30/
Go to article

Authors and Affiliations

Artur Prokopiuk
1
Zbigniew Bielecki
1
ORCID: ORCID
Jacek Wojtas
1
ORCID: ORCID

  1. Military University of Technology, Institute of Optoelectronics, 00-908 Warsaw, 2 Gen. Sylwestra Kaliskiego St.
Download PDF Download RIS Download Bibtex

Abstract

The paper presents noise measurements in low-resistance photodetectors using a cross-correlation-based transimpedance amplifier. Such measurements usually apply a transimpedance amplifier design to provide a current fluctuation amplification. In the case of low-resistance sources, the measurement system causes additional relevant system noise which can be higher than noise generated in a tested detector. It mainly comes from the equivalent input voltage noise of the transimpedance amplifier. In this work, the unique circuit and a three-step procedure were used to reduce the floor noise, covering the measured infrared detector noise, mainly when operating with no-bias or low-bias voltage. The modified circuit and procedure to measure the noise of unbiased and biased detectors characterized by resistances much lower than 100 Ω were presented. Under low biases, the reference low-resistance resistors tested the measurement system operation and techniques. After the system verification, noise characteristics in low-resistance InAs and InAsSb infrared detectors were also measured.
Go to article

Bibliography

  1. Vandamme, L. J. Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans. Electron. Devices. 41, 2176–2187 (1994). https://doi.org/10.1109/16.333839
  2. Kotarski, M. & Smulko, J. M. Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst. 16, 457–464 (2009). http://www.metrology.pg.gda.pl/full/2009/M&MS_2009_457.pdf
  3. Jones, B. Electrical noise as a reliability indicator in electronic devices and components. IEE Proc. G 149, 13–22 (2002). https://doi.org/10.1049/ip-cds:20020331
  4. Dyakonova, N., Karandashev, S. , Levinshtein, M .E., Matveev, B. A. & Remennyi, M. A. Low frequency noise in p-InAsSbP / n-InAs infrared photodiodes. Semicond. Sci. Technol. 33, 065016 (2018). https://doi.org/10.1088/1361-6641/aac15d
  5. Ciura, L., Kolek, A., Michalczewski, K., Hackiewicz, K. & Martyniuk, P. 1/f noise in InAs/InAsSb superlattice photoconductors. IEEE Trans. Electron Devices. 67, 3205–3210 (2020). https://doi.org/10.1109/TED.2020.2998449
  6. Savich, G. , Pedrazzani, J. R., Sidor, D. E., Maimon, S. & Wicks, G. W. Dark current filtering in unipolar barrier infrared detectors. Appl. Phys. Lett. 99, 121112 (2011). https://doi.org/10.1063/1.3643515
  7. Cervera, C. et al. Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4
  8. Ciofi, C., Giusi, G., Scandurra, G. & Neri, B. Dedicated instrumentation for high sensitivity, low frequency noise measurement systems. Noise Lett. 4, L385–L402 (2004). https://doi.org/10.1142/S0219477504001963
  9. Horowitz, P. & Hill, W. The Art of Electronics (Cambridge University Press, 2015).
  10. Achtenberg, K. et al. Low-frequency noise measurements of IR photodetectors with voltage cross correlation system. Measurement 183, 109867 (2021). https://doi.org/10.1016/j.measurement.2021.109867
  11. Ciura, Ł., Kolek, A., Gawron, W., Kowalewski, A. & Stanaszek, D. Measurements of low frequency noise of infrared photodetectors with transimpedance detection system. Meas. Syst. 21,
    461–472 (2014). https://doi.org/10.2478/mms-2014-0039
  12. Giusi, G., Pace, C. & Crupi, F. Cross-correlation-based trans-impedance amplifier for current noise measurements. J. Circ. Theor. Appl. 37, 781–792 (2008). https://doi.org/10.1002/cta.517
  13. Jaworowicz, K., Ribet-Mohamed, I., Cervera, C., Rodriguez, J. & Christol, P. Noise characterization of midwave infrared InAs/GaSb superlattice pin photodiode. IEEE Photon. Technol. 23, 242–244 (2011). https://doi.org/10.1109/lpt.2010.2093877
  14. Taalat, R., Christol, P. & Rodriguez, J. Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4
  15. Ramos, D. et al. 1/f noise and dark current correlation in midwave InAs/GaSb Type-II superlattice IR detectors. Status Solidi A. 218, 2000557 (2020). https://doi.org/10.1002/pssa.202000557
  16. De Iacovo, A., Venettacci, C., Colace, L. & Foglia, S. Noise performance of PbS colloidal quantum dot photodetectors. Phys. Lett. 111, 211104 (2017). https://doi.org/10.1063/1.5005805
  17. Rais, M. et al. HgCdTe photovoltaic detectors fabricated using a new junction formation technology. Microelectron. J. 31, 545–551 (2000). https://doi.org/10.1016/s0026-2692(00)00028-8
  18. Achtenberg, K., Mikołajczyk, J., Ciofi, C., Scandurra, G. & Bielecki, Z. Low-noise programmable voltage source. Electronics 9, 1245 (2020). https://doi.org/10.3390/electronics9081245
Go to article

Authors and Affiliations

Krzysztof Achtenberg 
1
ORCID: ORCID
Janusz Mikołajczyk
1
ORCID: ORCID
Zbigniew Bielecki
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp transimpedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√ Hz, 3 nV/√ Hz, 0.95 nV/√Hz and 0.6 nV/√ Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A −3 dB frequency response is from ∼ 20 mHz to ∼ 600 kHz.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Infrared detectors are usually characterized by 1/f noise when operating with biasing. This type of noise significantly reduces detection capabilities for low-level and slow signals. There are a few methods to reduce the influence of 1/f noise, like filtering or chopper stabilization with lock-in. Using the first one, a simple 1st-order analog low-pass filter built-in amplifier usually cuts off 1/f noise fluctuations at low frequencies. In comparison, the stabilization technique modulates the signal transposing to a higher frequency with no 1/f noise and then demodulates it back (lock-in amplifiers). However, the flexible tuned device, which can work precisely at low frequencies, is especially desirable in some applications, e.g., optical spectroscopy or interferometry. The paper describes a proof-of-concept of an IR detection module with an adjustable digital filter taking advantage of finite impulse response type. It is based on the high-resolution analog-to-digital converter, field-programmable gate array, and digital-to-analog converter. A microcontroller with an implemented user interface ensures control of such a prepared filtering path. The module is a separate component with the possibility of customization and can be used in experiments or applications in which the reduction of noises and unexpected interferences is needed.
Go to article

Authors and Affiliations

Krzysztof Achtenberg
1
ORCID: ORCID
Janusz Mikołajczyk
1
ORCID: ORCID
Zbigniew Bielecki
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO). Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

Go to article

Authors and Affiliations

Janusz Mikołajczyk
Zbigniew Bielecki
Maciej Bugajski
Józef Piotrowski
Jacek Wojtas
Waldemar Gawron
Dariusz Szabra
Artur Prokopiuk
Download PDF Download RIS Download Bibtex

Abstract

The paper is a review of analog and digital electronics dedicated to monitor nanosecond pulses. Choosing the optimal peak detector construction depends on many factors for example precision, complexity, or costs. The work shows some virtues and limitations of selected peak detection methods, for example standard peak detector with rectifier, sample and hold circuit with triggering units and ADC fast acquisition. However, the main attention is paid to problems of results from effective triggering signal for sample and hold operation. The obtained results allow for designing a peak detector construction as an alternative for costly and very complex fast acquisition systems based on ADC and FPGA technologies.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Dariusz Szabra
Artur Prokopiuk
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents some construction analysis and test results of a Free Space Optics system operating at the wavelength of 9.35 μm. In the system, a quantum cascade laser and a photoreceiver with mercury cadmium telluride photodetectors were used. The main parameters of these elements were discussed taking into account a data link operation. It also provides to determine a data range for various weather conditions related to scattering and scintillation. The results of numerical analyses defined the properties of currently available FSO technologies working in the near infrared or in the short infrared range of spectrum versus the performances of the developed system. The operation of this system was verified in three different test environments. The obtained results may also contain important issues related to the practical application of any FSO system.

Go to article

Authors and Affiliations

Janusz Mikolajczyk
Dariusz Szabra
Artur Prokopiuk
Krzysztof Achtenberg
ORCID: ORCID
Jacek Wojtas
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analyses of current research projects connected with explosive material sensors. Sensors are described assigned to X and γ radiation, optical radiation sensors, as well as detectors applied in gas chromatography, electrochemical and chemical sensors. Furthermore, neutron techniques and magnetic resonance devices were analyzed. Special attention was drawn to optoelectronic sensors of explosive devices.

Go to article

Authors and Affiliations

Zbigniew Bielecki
Tadeusz Stacewicz
Jacek Janucki
Adam Kawalec
Janusz Mikołajczyk
Norbert Pałka
Mateusz Pasternak
Tadeusz Pustelny
Jacek Wojtas
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an integrated laser absorption system as a potential tool for breath analysis for clinical diagnostics, online therapy monitoring and metabolic disorder control. The sensors operate basing on cavity enhanced spectroscopy and multi-pass spectroscopy supported by wavelength modulation spectroscopy. The aspects concerning selection of operational spectral range and minimization of interference are also discussed. Tests results of the constructed devices collected with reference samples of biomarkers are also presented. The obtained data provide an opportunity to analyse applicability of optoelectronic sensors in medical screening.

Go to article

Authors and Affiliations

Janusz Mikołajczyk
Tadeusz Stacewicz
Paweł Magryta
Jacek Wojtas
Zbigniew Bielecki
Dariusz Szabra
Artur Prokopiuk
Arkadiusz Tkacz
Małgorzata Panek
Download PDF Download RIS Download Bibtex

Abstract

Sensing technology has been developed for detection of gases in some environmental, industrial, medical, and scientific applications. The main tasks of these works is to enhance performance of gas sensors taking into account their different applicability and scenarios of operation. This paper presents the descriptions, comparison and recent progress in some existing gas sensing technologies. Detailed introduction to optical sensing methods is presented. In a general way, other kinds of various sensors, such as catalytic, thermal conductivity, electrochemical, semiconductor and surface acoustic wave ones, are also presented. Furthermore, this paper focuses on performance of the optical method in detecting biomarkers in the exhaled air. There are discussed some examination results of the constructed devices. The devices operated on the basis of enhanced cavity and wavelength modulation spectroscopies. The experimental data used for analyzing applicability of these different sensing technologies in medical screening. Several suggestions related to future development are also discussed.

Go to article

Authors and Affiliations

Janusz Mikołajczyk
Paweł Magryta
Tadeusz Stacewicz
Janusz Smulko
Zbigniew Bielecki
Jacek Wojtas
Dariusz Szabra
Łukasz Lentka
Artur Prokopiuk
Download PDF Download RIS Download Bibtex

Abstract

The review includes results of analyses and research aimed at standardizing the concepts and measurement procedures associated with photodetector parameters. Photodetectors are key components that ensure the conversion of incoming optical radiation into an electrical signal in a wide variety of sophisticated optoelectronic systems and everyday devices, such as smartwatches and systems that measure the composition of the Martian atmosphere. Semiconductor detectors are presented, and they play a major role due to their excellent optical and electrical parameters as well as physical parameters, stability, and long mean time to failure. As their performance depends on the manufacturing technology and internal architecture, different types of photodetectors are described first. The following parts of the article concern metrological aspects related to their characterization. All the basic parameters have been defined, which are useful both for their users and their developers. This allows for the verification of photodetectors’ workmanship quality, the capabilities of a given technology, and, above all, suitability for a specific application and the performance of the final optoelectronic system. Experimentally validated meteorological models and equivalent diagrams, which are necessary for the correct analysis of parameter measurements, are also presented. The current state of knowledge presented in recognized scientific papers and the results of the authors’ works are described as well.
Go to article

Authors and Affiliations

Zbigniew Bielecki
1
ORCID: ORCID
Krzysztof Achtenberg
1
ORCID: ORCID
Małgorzata Kopytko
2
ORCID: ORCID
Janusz Mikołajczyk
1
ORCID: ORCID
Jacek Wojtas
1
ORCID: ORCID
Antoni Rogalski
2
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  2. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more