Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Abstract The study used fluorescence microscopy to examine changes in cytoskeleton configuration during development of the embryo suspensor in Gagea lutea and to describe them in tandem with the development of the embryo proper. During the early phase of embryo suspensor development, tubulin and actin filaments were observed in the cytoplasm of the basal cell from the micropylar to the chalazal ends of the cell. Around the nucleus of the basal cell were clusters of numerous microtubules. These accumulations of tubulin arrays congregated near the nucleus surface; numerous bundles of microtubules radiated from the nucleus envelope. At this time, microfil-aments formed a delicate network in the cytoplasm of the basal cell. In the fully differentiated embryo suspensor, microtubules were observed at the chalazal end of the basal cell. Numerous bundles of microtubules were visualized in the cytoplasm adjacent to the wall separating the basal cell from the embryo proper. Microfilaments formed a dense network which uniformly filled the basal cell cytoplasm. There were some foci of F-actin material in the vicinity of the nucleus surface and at the chalazal end of the basal cell. In all studied phases of embryo suspensor development a prominent cortical network of actin and tubulin skeleton was observed in embryo proper cells.
Go to article

Authors and Affiliations

Joanna Świerczyńska
Jerzy Bohdanowicz
Download PDF Download RIS Download Bibtex

Abstract

We examined the development of the endosperm chalazal haustorium of Rhinanthus serotinus, using histochemical assays and light and electron microscopy. The chalazal haustorium is a huge single cell containing two enlarged nuclei. The nuclei are located in the middle of the haustorium cell. At the chalazal end of the haustorium cell structure, ultrastructural study revealed the presence of a transfer wall forming wall ingrowths. At all examined stages of haustorium cell development we identified insoluble polysaccharides, proteins, nucleic acids and lipid droplets. Macromolecules were especially abundant in the fully differentiated haustorium cell. Our results suggest that the endosperm chalazal haustorium is a site of intense metabolic activity

Go to article

Authors and Affiliations

Joanna Świerczyńska
Małgorzata Kozieradzka-Kiszkurno
Jerzy Bohdanowicz
Download PDF Download RIS Download Bibtex

Abstract

In flowering plants, seeds are produced both sexually (double fertilization is required) and asexually via apomixis (meiotic reduction and egg fertilization are omitted). An apomictic-like pattern of endosperm development in planta is followed by fis mutants of sexual Arabidopsis thaliana. In our experiments in planta, autonomous endosperm (AE) developed in met1 mutants. Furthermore we obtained autonomous endosperm formation in vitro not only in unfertilized ovules of fie mutants but also in wild genotypes (Col-0, MET1/MET1, FIE/FIE) and met1 mutants. AE induction and development occurred in all genotypes on the each of the media used and in every trial. The frequency of AE was relatively high (51.2% ovaries) and genotype-dependent. AE induced in vitro represents a more advanced stage of development than AE induced in fie mutants in planta. This was manifested by a high number of nuclei surrounded by cytoplasm and organized in nuclear cytoplasmic domains (NCDs), nodule formation, division into characteristic regions, and cellularization. The high frequency of AE observed in homozygous met1 (met1/met1) mutants probably is due to accumulation of hypomethylation as an effect of the met1 mutation and the in vitro conditions. AE development was most advanced in FIE/fie mutants. We suggest that changes in the methylation of one or several genes in the DNA of Arabidopsis genotypes caused by in vitro conditions resulted in AE induction and/or further AE development.

Go to article

Authors and Affiliations

Joanna Rojek
Elżbieta Kuta
Małgorzata Kapusta
Anna Ihnatowicz
Jerzy Bohdanowicz

This page uses 'cookies'. Learn more