Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The impact of wind power plants on the environmental components is assessed taking into account a number of their parameters, in particular the technical characteristics of wind turbines, the characteristics of networks, engineering and other structures. To do this the life cycle of the wind power plants is described taking into account (by way of inventory) all the necessary materials and resources. Waste management scenarios have been developed, the use of which will make it possible to reduce the harmful impact on the environment. Based on the inventory and input data on the wind farm under study, a diagram is generated – a tree of life cycle processes of the wind power plant – to determine the potential environmental impacts. A list of impact categories that represent the load on the environment caused by the wind power plant is defined; also, the relative contribution of harmful factors is determined for each category, taking into account possible scenarios of waste management. Ecological profiles have been built for all potential impacts on the environment. After normalisation and determination of significance, individual estimates of all indicators and their distribution in three categories of lesions were obtained: human health, ecosystem quality and resources, as well as four stages of the wind farm life cycle: production, dismantling and disposal, operation, transportation and installation. The obtained profiles made it possible to determine individual indicators and eco-indicators, expressed in eco-points that characterise the wind farm under study.
Go to article

Bibliography

BABAK V.P., BABAK S.V., MYSLOVYCH M.V., ZAPOROZHETS A.O., ZVARITCH V.M. 2020. Methods and models for information data analysis. In: Diagnostic systems for energy equipments. Ser. Studies in Systems, Decision and Control. Vol. 281 p. 23–70. Springer. DOI 10.1007/978-3-030-44443-3_2.
BOJKO T.G., PASLAVSKYI M.M., RUDA M.V. 2019. Stability of composite landscape complexes: model formalization. Scientific Bulletin of UNFU. Vol. 29(3) p. 108–113. DOI 10.15421/40290323.
BOSAK N., CHERNIUK V., MATLAI I., BIHUN I. 2019. Studying the mutual interaction of hydraulic characteristics of water distributing pipelines and their spraying devices in the coolers at energy units. Eastern-European Journal of Enterprise Technologies. Vol. 3/8 (99) p. 23–29. DOI 10.15587/1729-4061.2019.166309.
BURTON T., SHARPE D., JENKINS N., BOSSANYI E. 2001. Wind energy. Handbook. Brisbane England. John Wiley & Sons. ISBN 0471489972 pp. 609.
CHAPMAN P.F., ROBERTS F. 1983. Metal resources and energy. Ser. Butterworths Monographs in Materials. Boston. Butterworth- Heinemann Ltd. ISBN 0408108029 pp. 248.
CHERNIUK V.V., IVANIV V.V., BIHUN I.V., WOJTOWICZ JA.M. 2019. Coefficientof flow rate of inlet cylindrical nozzles with lateral orthogonal inflow. In: Lecture Notes in Civil Engineering. Book Series. Vol. 47 [e-book]. Ed. Z. Blikharskyy. Proceedings of CEE p. 50–57.
CHMIELNIAK T. 2008. Technologie energetyczne [Energy technologies]. Warszawa. WNT. ISBN 9788379260324 pp. 564.
CLEARY B., DUFFY A., O’CONNOR A. 2012. Using life cycle assessment to compare wind energy infrastructure. International Symposium on Life Cycle Assessment and Construction. Nantes, France 10– 12.07.2012 p. 87–98.
Danish Energy Agency 2020. Energy Statistics 2020 [online]. [Access 27.05.2020]. Available at: https://ens.dk/en/our-services/statis-tics-data-key-figures-and-energy-maps/annual-and-monthly-sta-tistics
DSTU ISO 14040:2004 2007. Ekologhichne keruvannja. Ocinjuvannja zhyttjevogho cyklu. Pryncypy ta struktura [Environmental management. Life cycle assessment. Principles and structure]. Kyiv. Derzhstandart Ukrajiny.
EU 2010. ILCD Handbook – General guide for Life Cycle Assessment – Detailed guidance. 1st ed. 2010. EUR 24708 EN. Luxembourg. European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data System Publications Office of the European Union. ISBN 978-92-79-19092-6 pp. 394. DOI 10.2788/38479.
GHENAI CH. 2012. Life cycle analysis of wind turbine. In: Sustainable development, energy, engineering and technologies, manufacturing and environment. Ed. Ch. Ghenai. InTech p. 19–32. DOI 10.5772/29184.
GOEDKOOP M., OELE M., LEIJTING J., PONSIOEN T., MEIJER E. 2016. Introduction to LCA with SimaPro. [online]. [Access 01.08.2012]. Available at: https://www.presustainability.com/download/Sima-Pro8IntroductionToLCA.pdf
ISO 14040 Environmental Management. 1997. Life Cycle Assessment. Principles and framework. International Organisation for standardisation: Geneva, Switzerland. ISO 14042: DSTU ISO/TR 14047:2007 (ISO/TR 14047:2003, IDT) Ekologhichne upravlinnja. Ocinjuvannja vplyviv u procesi zhytt-jevogho cyklu. Pryklady zastosuvannja. [Environmental management. Impact assessment in the life cycle. Application examples], Kyiv. Derzhstandart Ukrajiny.
KOLLNER T., JUNGBLUTH N. 2000. Life cycle impact assessment for land use. Third SETAC World Congress, 21–25.05.2000, Brighton, UK p. 17–35.
LENZEN M., WACHSMANN U. 2004. Wind turbines in Brazil and Germany: An example of geographical variability in life-cycle assessment. Applied Energy. Vol. 77 p. 119–130.
MARTINEZ E., SANZ F., PELLEGRINI S., JIMÉNEZ E., BLANCO J. 2009. Life cycle assessment of a multi-megawatt wind turbine. Renewable Energy. Vol. 34(3) p. 667–673. DOI 10.1016/j.renene.2008.05.020.
POMBO O., ALLACKER K., RIVELA B., NEILA J. 2016. Sustainability assessment of energy saving measures: a multi-criteria approach for residential buildings retrofitting. A case study of the Spanish housing stock. Energy and Buildings. Vol. 116 p. 384–394. DOI 10.1016/j.enbuild.2016.01.019.
PROKOPENKO O., CEBULA J., CHAYEN S., PIMONENKO T. 2007. Wind energy in Israel, Poland and Ukraine: Features and opportunities. International Journal of Ecology and Development. Vol. 32(1) p. 98–107.
SINHA R., LENNARTSSON M., FROSTELL B. 2016. Environmental footprint assessment of building structures: A comparative study. Building and Environment. Vol. 104 p. 162–171. DOI 10.1016/j.buildenv.2016.05.012.
TÓTH T., SZEGEDI S. 2007. Anthropogeomorphologic impacts of onshore and offshore wind farms. Acta Climatologica et Chorologica. Vol. 40–41 p. 147–154.
UN 1992. Climate change and transnational corporations analysis and trends [online]. New York. United Nations. ISBN 92-1-104385-9. [Access 20.06.2006]. Available at: http://www.ieer.org/reports/ climchg/ch7.pdf
VAN DE MEENT D., BAKKER J., KLEPPER O. 1997. Potentially Affected Fraction as an indicator of toxic stress, application of aquatic and terrestrial ecosystems in The Netherlands. 18th Annual Meeting of SETAC, November. San Francisco pp. 245. Vestas 2004. General Specification V90 – 3.0 MW 60 Hz Variable Speed Turbine [online]. [Access 20.05.2006]. Available at: https://report.nat.gov.tw/ReportFront/PageSystem/reportFileDownload/C09503816/002
Vestas 2005. Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW turbines [online]. [Access 20.05.2006]. Available at: https://www.vestas.com/content/dam/vestas-com/global/en/sustainability/reports-and-ratings/lcas/LCA_V903MW_version_1_1.pdf.coredownload.inline.pdf
ZBICINSKI I., STAVENUITER J., KOZLOWSKA B., VAN DE COEVERING H. 2006. Product design and life cycle assessment. Ser. Environmental Management. No. 3. Uppsala. The Baltic University Press. ISBN 91-975526-2-3 pp. 314.
Go to article

Authors and Affiliations

Mariia Ruda
1
ORCID: ORCID
Taras Boyko
1
ORCID: ORCID
Oksana Chayka
1
ORCID: ORCID
Maryna Mikhalieva
2
ORCID: ORCID
Olena Holodovska
1
ORCID: ORCID

  1. Lviv Polytechnic National University, 12 Bandera Str., 79000, Lviv, Ukraine
  2. Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The analysis of ecological hazards on soil pollution by oil products has been provided in the impact zone of the railway. The results of oil product migration in soils in the area of influence on section Lviv–Khodoriv are given. To study this problem, a method was used to take soil samples according to the standard DSTU ISO 10381-4: 2005. To determine the content of petroleum products used the method MVV No. 081/12-0116-03 Pochvy. Based on the results of the study it was found that contamination with petroleum products in the study area exceeds the norm in the area of influence of the railway at a distance of 5 to –50 m on average 3.5 times. It is proposed to make management decisions to prevent violations of the sanitary protection zone of the railway and the placement of agricultural plots on it. For rehabilitation of contaminated soils, it is advisable to use a natural sorbent – glauconite, which is widespread in the bowels of Ukraine. The adsorption capacity of glauconite relative to diesel fuel has been experimentally established. According to our experiments it is proved the high efficiency of the proposed sorbent, which is 90%. Therefore, in the future it is necessary to periodically monitor the condition of the soil in the area to prevent pollution. This study proves that this practice is necessary.
Go to article

Authors and Affiliations

Oksana Chayka
1
ORCID: ORCID
Igor Petrushka
1
ORCID: ORCID
Maria Ruda
1
ORCID: ORCID
Nadiya Paranyak
1
ORCID: ORCID
Olena Matskiv
1
ORCID: ORCID

  1. Lviv National Polytechnic University, Faculty of Ecological Safety and Environmental Protection, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine

This page uses 'cookies'. Learn more