Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a four-pole system matrix for evaluating acoustic performance (STL) is derived using a decoupled numerical method. During the optimization process, a simulated annealing (SA) method, which is a robust scheme utilized to search for the global optimum by imitating a physical annealing process, is used. Prior to dealing with a broadband noise, to recheck the SA method’s reliability, the STL’s maximization relative to a one-tone noise (400Hz) is performed. To assure the accuracy of muffler’s mathematical model, a theoretical analysis of one-diffuser muffler is also confirmed by an experimental data. Subsequently, the optimal results of three kinds of mufflers (muffler A: one diffuser; muffler B: two diffusers; muffler C: three diffusers) have also been compared. Results reveal that the acoustical performance of mufflers will increase when the number of diffusers installed at the muffler inlet increases
Go to article

Bibliography

1. Bie D.A., Hansen C.H. (1988), Engineering Noise Control: Theory and Practice, Unwin Hyman, London.
2. Chang Y.C., Yeh L.J., Chiu M.C. (2004), Numerical studies on constrained venting system with side inlet/outlet mufflers by GA optimization, Acta Acustica united with Acustica, 90(6): 1159–1169.
3. Chang Y.C., Yeh L.J., Chiu M.C. (2005a), Shape optimization on double-chamber mufflers using genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(1): 31–42, doi: 10.1243/095440605X8351.
4. Chang Y.C., Yeh L.J., Chiu M.C., Lai G.J. (2005b), Shape optimization on constrained singlelayer sound absorber by using GA method and mathematical gradient methods, Journal of Sound and Vibration, 1286(4–5): 941–961, doi: 10.1016/j.jsv.2004.10.039.
5. Chiu M.C. (2009a), Optimization of equipment allocation and sound-barriers shape in a multi-noise plant by using simulated annealing, Noise & Vibration Worldwide, 40(7): 23–35, doi: 10.1260/095745609788921857.
6. Chiu M.C. (2009b), Simulated annealing optimization on multi-chamber mufflers hybridized with perforated plug-inlet under space constraints, Archives of Acoustics, 34(3): 305–343.
7. Chiu M.C. (2010a), Numerical optimization of a threechamber muffler hybridized with a side inlet and a perforated tube by SA method, Journal of Marine Science and Technology, 18(4): 484–495, doi: 10.51400/2709-6998.1897.
8. Chiu M.C. (2010b), Optimal design of multi-chamber mufflers hybridized with perforated intruding inlets and resonated tube using simulated annealing, Journal of Vibration and Acoustics, 132(5): Article ID 054503, doi: 10.1115/1.4001514.
9. Chiu M.C. (2012), Noise elimination of a multi-tone broadband noise with hybrid Helmholtz mufflers using a simulated annealing method, Archives of Acoustics, 37(4): 489–498, doi: 10.2478/v10168-012-0061-0.
10. Chiu M.C. (2013), Numerical assessment for a broadband and tuned noise using hybrid mufflers and a simulated annealing method, Journal of Sound and Vibration, 332(12): 2923–2940, doi: 10.1016/j.jsv.2012.12.039.
11. Chiu M.C. (2014a), Acoustical treatment of multi-tone broadband noise with hybrid side-branched mufflers using a simulated annealing method, Journal of Low Frequency Noise Vibration and Active Control, 33(1): 79–112, doi: 10.1260/0263-0923.33.1.79.
12. Chiu M.C. (2014b), Optimal design on one-layer closefitting acoustical hoods using a simulated annealing method, Journal of Marine Science and Technology, 22(2): 211–217, doi: 10.6119/JMST-013-0503-1.
13. Chiu M.C., Chang Y.C. (2014), An assessment of high-order-mode analysis and shape optimization of expansion chamber mufflers, Archives of Acoustics, 39(4): 489–499, doi: 10.2478/aoa-2014-0053.
14. Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983), Optimization by simulated annealing, Science, 220 (4598): 671–680, doi: 10.1126/science.220.4598.671.
15. Metropolis A., Rosenbluth W., Rosenbluth M.N., Teller H., Teller E. (1953), Equation of static calculations by fast computing machines, The Journal of Chemical Physics, 21(6): 1087–1092, doi: 10.1063/1.1699114.
16. Munjal M.L. (1987), Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons, New York.
17. Munjal M.L., Rao K.N., Sahasrabudhe A.D. (1987), Aeroacoustic analysis of perforated muffler components, Journal of Sound and Vibration, 114(2): 173– 188, doi: 10.1016/S0022-460X(87)80146-3.
18. Peat K.S. (1988), A numerical decoupling analysis of perforated pipe silencer elements, Journal of Sound and Vibration, 123(2), 199–212.
19. Sullivan J.W. (1979a), A method of modeling perforated tube muffler components I: theory, The Journal of the Acoustic Society of America, 66(3): 772–778, doi: 10.1121/1.383679.
20. Sullivan J.W. (1979b), A method of modeling perforated tube muffler components II: theory, The Journal of the Acoustic Society of America, 66(3): 779–788, doi: 10.1121/1.383680.
21. Sullivan J.W., Crocker M.J. (1978), Analysis of concentric tube resonators having unpartitioned cavities, The Journal of the Acoustic Society of America, 64(1): 207–215, doi: 10.1121/1.381963.
22. Yeh L.J., Chang Y.C., Chiu M.C., Lai G.J. (2004), GA optimization on multi-segments muffler under space constraints, Applied Acoustics, 65(5): 521–543, doi: 10.1016/j.apacoust.2003.10.010.
23. Yeh L.J., Chang Y.C., Chiu M.C. (2006), Numerical studies on constrained venting system with reactive mufflers by GA optimization, International Journal for Numerical Methods in Engineering, 65(8): 1165–1185, doi: 10.1002/nme.1476.
Go to article

Authors and Affiliations

Min-Chie Chiu
1
Ho-Chih Cheng
2

  1. Department of Mechanical and Materials Engineering, Tatung University, Taiwan, R.O.C.
  2. Department of Intelligent Automation Engineering, Chung Chou University of Science and Technology, Taiwan, R.O.C.
Download PDF Download RIS Download Bibtex

Abstract

There has been considerable research done on multi-chamber mufflers used in the elimination of industrial venting noise. However, most research has been restricted to lower frequencies using the plane wave theory. This has led to underestimating acoustical performances at higher frequencies. Additionally, because of the space-constrained problem in most plants, the need for optimization of a compact muffler seems obvious. Therefore, a muffler composed of multiple rectangular fin-shaped chambers is proposed. Based on the eigenfunction theory, a four-pole matrix used to evaluate the acoustic performance of mufflers will be deduced. A numerical case for eliminating pure tones using a three-fin-chamber muffler will also be examined. To delineate the best acoustical performance of a space-constrained muffler, a numerical assessment using the Differential Evolution (DE) method is adopted. Before the DE operation for pure tone elimination can be carried out, the accuracy of the mathematical model must be checked using experimental data. The results reveal that the broadband noise has been efficiently reduced using the three-fin-chamber muffler. Consequently, a successful approach in eliminating a pure tone using optimally shaped three-fin-chamber mufflers and a differential evolution method within a constrained space has been demonstrated.
Go to article

Authors and Affiliations

Min-Chie Chiu
Ying-Chun Chang
Ho-Chih Cheng
Wei-Ting Tai
Download PDF Download RIS Download Bibtex

Abstract

Most researchers have explored noise reduction effects based on the transfer matrix method and the boundary element method. However, maximum noise reduction of a plenum within a constrained space, which frequently occurs in engineering problems, has been neglected. Therefore, the optimum design of multi-chamber plenums becomes essential. In this paper, two kinds of multi-chamber plenums (Case I: a two-chamber plenum that is partitioned with a centre-opening baffle; Case II: a three-chamber plenum that is partitioned with two centre-opening baffles) within a fixed space are assessed. In order to speed up the assessment of optimal plenums hybridized with multiple partitioned baffles, a simplified objective function (OBJ) is established by linking the boundary element model (BEM, developed using SYSNOISE) with a polynomial neural network fit with a series of real data – input design data (baffle dimensions) and output data approximated by BEM data in advance. To assess optimal plenums, a genetic algorithm (GA) is applied. The results reveal that the maximum value of the transmission loss (TL) can be improved at the desired frequencies. Consequently, the algorithm proposed in this study can provide an efficient way to develop optimal multi-chamber plenums for industry.
Go to article

Authors and Affiliations

Ying-Chun Chang
Ho-Chih Cheng
Min-Chie Chiuminchie
Yuan-Hung Chien

This page uses 'cookies'. Learn more