Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Artificial intelligence operated with machine learning was performed to optimize the amount of metalloid elements (Si, B, and P) subjected to be added to a Fe-based amorphous alloy for enhancement of soft magnetic properties. The effect of metalloid elements on magnetic properties was investigated through correlation analysis. Si and P were investigated as elements that affect saturation magnetization while B was investigated as an element that affect coercivity. The coefficient of determination R2 (coefficient of determination) obtained from regression analysis by learning with the Random Forest Algorithm (RFR) was 0.95 In particular, the R2 value measured after including phase information of the Fe-Si-B-P ribbon increased to 0.98. The optimal range of metalloid addition was predicted through correlation analysis method and machine learning.
Go to article

Authors and Affiliations

Min-Woo Lee
1
ORCID: ORCID
Young-Sin Choi
1
ORCID: ORCID
Do-Hun Kwon
1
ORCID: ORCID
Eun-Ji Cha
1
ORCID: ORCID
Hee-Bok Kang
2
ORCID: ORCID
Jae-In Jeong
2
ORCID: ORCID
Seok-Jae Lee
3
ORCID: ORCID
Hwi-Jun Kim
1
ORCID: ORCID

  1. Smart Liquid Processing R&D Department of Korea Institute of Industrial Technology, Incheon 21999, Korea
  2. R&D Center of Youngin Electronic, Youngin 1033, Korea
  3. Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju 54896, Korea
Download PDF Download RIS Download Bibtex

Abstract

The soft magnetic properties of Fe-based amorphous alloys can be controlled by their compositions through alloy design. Experimental data on these alloys show some discrepancy, however, with predicted values. For further improvement of the soft magnetic properties, machine learning processes such as random forest regression, k-nearest neighbors regression and support vector regression can be helpful to optimize the composition. In this study, the random forest regression method was used to find the optimum compositions of Fe-Si-B-C alloys. As a result, the lowest coercivity was observed in Fe80.5Si3.63B13.54C2.33 at.% and the highest saturation magnetization was obtained Fe81.83Si3.63B12.63C1.91 at.% with R2 values of 0.74 and 0.878, respectively.
Go to article

Authors and Affiliations

Young-Sin Choi
1 2
ORCID: ORCID
Do-Hun Kwon
1
ORCID: ORCID
Min-Woo Lee
1
ORCID: ORCID
Eun-Ji Cha
1
ORCID: ORCID
Junhyup Jeon
3
ORCID: ORCID
Seok-Jae Lee
3
ORCID: ORCID
Jongryoul Kim
2
ORCID: ORCID
Hwi-Jun Kim
1
ORCID: ORCID

  1. Smart Liquid Processing R&D Department, Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-Gu, Incheon 21999, Korea
  2. Hanyang Univ., Department of Materials Science and Chemical Engineering, Ansan 15588, Korea
  3. Jeonbuk National Univ., Division of Advanced Materials Engineering, Jeonju 54896, Korea

This page uses 'cookies'. Learn more