Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The presented problem consists in optimizing the pulling force of the luffing jib tower cranes, in order to reduce power and save energy by determining reasonable geometrical parameters such as placement of pulley assemblies, position of jib pin, and jib length. To determine the optimal parameters, a mechanical model was developed to calculate the pulling force of the research object. Then, the Taguchi method and Minitab software were applied to evaluate the influence of the parameters. The objective function was the minimum pulling force of the luffing jib. The calculation results show that the position of the pulley assembly used to pull the jib is the most influential factor on the objective function accounting for 81.15%, the less significant factors are the jib length, the pin position of the jib, and the pulley assembly that changes the direction of the load lifting cable. The result of the test presented in the article allowed for determining the rational parameters, and the optimal position of the pulley assemblies on the top of the crane. In the case of the pulley assembly located at the top of the crane, one obtains the optimal height of the crane head H≈0.4 L c.
Go to article

Bibliography

[1] H. Hyun, M. Park, D. Lee, and J.Lee. Tower crane location optimization for heavy unit lifting in high-rise modular construction. Buildings, 11(3):121, 2021. doi: 10.3390/buildings11030121.
[2] T.G. Duong. Research on fundamental calculation of tower cranes examining into the elastic deflections of tower bod. Journal of Science and Technology in Civil Engineering, 11(4):139–144, 2017. https://stce.huce.edu.vn/index.php/vn/article/view/652.
[3] T.G. Duong. Selecting control method of hydraulic resistances in hydraulic system for tower crane climbing mechanism. Journal of Science and Technology in Civil Engineering,14(3V):140–148, 2020. doi: 10.31814/stce.nuce2020-14(3V)-13.
[4] B. Li, L. Lei, and B. Liu. Research of tower crane suspended climb supporting system. Applied Mechanics and Materials, 130-134:1889–1893, 2012. doi: 10.4028/www.scientific.net/AMM.130-134.1889.
[5] S. Chwastek. Optimization of crane mechanisms to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
[6] S. Chwastek. Finding the globally optimal correlation of cranes drive mechanisms. Mechanics Based Design of Structures and Machines, 51(6):3230–3241, 2023. doi: 10.1080/15397734.2021.1920978.
[7] Y. Xue, M.S. Ji, N. Wu, Y. Xue, and W. Wang. The dimensionless-parameter robust optimization method based on geometric approach of pulley block compensation in luffing mechanism. In: Proceedings of the 2015 International Conference of Electrical, Automation and Mechanical Engineering, pages 157–160, Atlantis Press 2015. doi: 10.2991/eame-15.2015.43.
[8] X. Li. Truss structure optimum design and its engineering application. Computers \amp; Structures, 36(3): 567–573, 1990. doi: 10.1016/0045-7949(90)90291-9.
[9] R. Šelmić, P. Cvetković, R. Mijailović, and G. Kastratović. Optimum dimensions of triangular cross-section in lattice structures. Meccanica, 41:391–406, 2006. doi: 10.1007/s11012-005-5337-2.
[10] R. Mijailović and G. Kastratović. Cross-section optimization of tower crane lattice boom. Meccanica, 44:599–611,2009. doi: 10.1007/s11012-009-9204-4.
[11] J. Wang, L. Li, and L. Hao. APDL-based optimization of the boom of luffing jib tower cranes. Advanced Materials Research, 291-294:2566–2573, 2011. doi: 10.4028/www.scientific.net/AMR.291-294.2566.
[12] Q. Wu, Q. Zhou, X. Xiong and R. Zhang. Periodic topology and size optimization design of tower crane boom. International Scholarly and Scientific Research \amp; Innovation, 11(8), 2017. doi: 10.5281/zenodo.1131629.
[13] X-L. Cheng, H-L. Yang, and B. Zhu. Structure lightweight design of luffing jib tower crane jib. Machine Tool \amp; Hydraulics, 46(18): 81–86,99, 2018. doi: href="https://doi.org/10.3969/j.issn.1001-3881.2018.18.012">10.3969/j.issn.1001-3881.2018.18.012.
[14] D.S. Kim and J. Lee. Structural design of a level-luffing crane through trajectory optimization and strength-based size optimization. Structural and Multidisciplinary Optimization, 51: 515–531, 2015. doi: 10.1007/s00158-014-1139-2.
[15] Q. Jiao, Y. Qin, Y. Han, and J. Gu. Modeling and optimization of pulling point position of luffing jib on portal crane. Mathematical Problems in Engineering, 2021: 4627257, 2021. doi: 10.1155/2021/4627257.
[16] FEM 1.001: Rules for the Design of Hoisting Appliances (3rd Edition Revised 1998.10.01).
[17] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
[18] A. Arunkumar, S. Ramabalan, and D. Elayaraja. Optimum design of stair-climbing robots using Taguchi method. Intelligent Automation\amp; Soft Computing, 35(1):1229–1244, 2023. doi: 10.32604/iasc.2023.027388.
[19] M. Milos, I. Lozica, P. Nenad, and K. Nenad. Determination of the most influential factor during the rope winding process around winch drums using Taguchi method. 8th Iinternational Conference on Tribology, pages 794-798, 2014, Sinaia, Romania.
[20] P.J. Gamez-Montero, and E. Bernat-Maso. Taguchi techniques as an effective simulation-based strategy in the design of numerical simulations to assess contact stress in gerotor pumps. Energies, 15(19):7138, 2022. doi: 10.3390/en15197138.
[21] D-C. Chen, C-S. You, F-L. Nian, and M-W. Guo. Using the Taguchi method and finite element method to analyze a robust new design for titanium alloy prick hole extrusion, Procedia Engineering, 10:82–87, 2011. doi: 10.1016/j.proeng.2011.04.016.
[22] H-J. Chen, H-C. Lin, C-W .Tang. Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates. Sustainability, 13(10):5576, 2021. doi: 10.3390/su13105576.
[23] R. Barea, S. Novoa, F. Herrera, B. Achiaga, and N. Candela. A geometrical robust design using the Taguchi method: application to a fatigue analysis of a right angle bracket. DYNA, 85(205):37–46, 2018. doi: 10.15446/dyna.v85n205.67547.
[24] T. G. Duong. Instructions Manual for Calculating the Lifting Machine. Construction Publisher, Hanoi, Vietnam, 2019.
Go to article

Authors and Affiliations

Truong Giang Duong
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

In the previous study, we designed one personal rescue winch for high-rise building rescue. Its key requirement is to be small and light enough to suit users. In addition to using lightweight and reasonable materials as in the proposed winch design, in this study, we proceed to optimize the weight of one two-level gear train, which accounts for a large proportion of weight. The first stage is building a weight optimization problem model with seven independent variables, establishing one optimal algorithm, and investigating the variables by Matlab software. The other is replacing the web material of the gears and pinions with Aluminum 6061-T6 and optimizing their hole diameters and hole numbers through using Ansys software. The obtained result shows a significant weight reduction. Compared to the original design, the weight reduces by 10.21% and 52.40% after the first optimal and last stages, respectively.
Go to article

Bibliography

[1] J.E. Renton and P.T.M. Nott. Personal height rescue apparatus. Patent No. US9427607B2, 2016.
[2] J. Tremblay. Tower rescue emergency module. Patent No. US2013/0206505A1, 2013.
[3] V.T. Nguyen, K.A. Nguyen, and V.L. Nguyen. An improvement of a hydraulic selfclimbing formwork. Archive of Mechanical Engineering, 66(4):495–507, 2019. doi: 10.24425/ame.2019.131419.
[4] T.G. Duong, V.T. Nguyen, and T.T.D. Nguyen. Research on designing the individual rescue winch. Journal of Science and Technology in Civil Engineering, 15(1V):123–133, 2021. doi: 10.31814/stce.nuce2021-15(1V)-11.
[5] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
[6] M.W. Huang and J.S. Arora. Optimal design with discrete variables: some numerical experiments. International Journal for Numerical Methods in Engineering, 40:165–188, 1997. doi: 10.1002/(sici)1097-0207(19970115)40:1165::aid-nme60>3.0.co;2-i.
[7] J.S. Arora and M.W. Huang. Discrete structural optimization with commercially available sections. Structural Eng./Earthquake Eng., JSCE, 13(2):93–110, 1996. doi: 10.2208/jscej.1996.549_1.
[8] T. Yokota, T. Taguchi, and M. Gen. A solution method for optimal weight design problem of the gear using genetic algorithms. Computer & Industrial Engineering, 35(3-4):523–526, 1998. doi: 10.1016/s0360-8352(98)00149-1.
[9] H. Reddy, J.A.S. Kumar, and A.V. Hari Babu. Minimum weight optimization of a gear train by using genetic algorithm. International Journal of Current Engineering and Technology, 6(4):1119–1124, 2016.
[10] B. Mahiddini, T. Chettibi, K. Benfriha, and A. Aoussat. Optimum design of a spur gear using a two level optimization. Mechanika, 25(4): 304–312, 2019. doi: 10.5755/j01.mech.25.4.18994.
[11] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.
[12] P. Starry, E. Dupinet, and M. Mekhilef. A new way to optimize mechanical systems using simulated annealing. Transactions on the Built Environment, 2:569–583, 1993.
[13] V. Savsani, R.V. Rao, and D.P. Vakharia. Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mechanism and Machine Theory, 45(3):531–541, 2010. doi: 10.1016/j.mechmachtheory.2009.10.010.
[14] N. Godwin Raja Ebenezer, S. Ramabalan, and S. Navaneethasanthakumar. Practical optimal design on two stage spur gears train using nature inspired algorithms. International Journal of Engineering and Advanced Technology, 8(6):4073–4081, 2019. doi: 10.35940/ijeat.F8638.088619.
[15] V. Pimpalte and S.C. Shilwant. Topology optimization of gears from two wheeler gear set using parametric study. IOSR Journal of Mechanical and Civil Engineering, 14(1):22–31, 2017. doi: 10.9790/1684-1401022231.
[16] R. Ramadani, A. Belsak, M. Kegl, J. Predan, and S. Pehan. Topology optimization based design of lightweight and low vibration gear bodies. International Journal of Simulation Modelling, 17(1):92–104, 2018. doi: 10.2507/IJSIMM17(1)419.
[17] A.J. Muminovic, A. Muminovic, E. Mesic, I. Saric, and N. Pervan. Spur gear tooth topology optimization: finding optimal shell thickness for spur gear tooth produced using additive manufacturing. TEM Journal, 8(3):788–794, 2019. doi: 10.18421/TEM83-13.
[18] ISO 54:1996, Cylindrical gears for general engineering and for heavy engineering – Modules. International Organization for Standardization, 1996.
[19] R.G. Budynas and J.K. Nisbett. Shigley’s Mechanical Engineering Design. 10th edition, McGraw-Hill, 2020.
Go to article

Authors and Affiliations

Truong Giang Duong
1
ORCID: ORCID
Van Tinh Nguyen
1
Tien Dung Nguyen
1

  1. Faculty of Mechanical Engineering, National University of Civil Engineering, Hanoi, Vietnam.

This page uses 'cookies'. Learn more