Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the joining of AZ91 magnesium alloy with AlSi17 aluminium alloy by compound casting. Molten AZ91 was cast at

650oC onto a solid AlSi17 insert placed in a steel mould under normal atmospheric conditions. Before casting, the mould with the insert

inside was heated up to about 370oC. The bonding zone forming between the two alloys because of diffusion had a multiphase structure

and a thickness of about 200 µm. The microstructure and composition of the bonding zone were analysed using optical microscopy,

scanning electron microscopy and energy dispersive X-ray spectroscopy. The results indicate that the bonding zone adjacent to the AlSi17

alloy was composed of an Al3Mg2 intermetallic phase with not fully consumed primary Si particles, surrounded by a rim of an Mg2Si

intermetallic phase and fine Mg2Si particles. The bonding zone near the AZ91 alloy was composed of a eutectic (an Mg17Al12 intermetallic

phase and a solid solution of Al and Si in Mg). It was also found that the compound casting process slightly affected the AZ91alloy

microstructure; a thin layer adjacent to the bonding zone of the alloy was enriched with aluminium.

Go to article

Authors and Affiliations

R. Mola
T. Bucki
A. Dziadoń
Download PDF Download RIS Download Bibtex

Abstract

AZ91 alloy was cast in a steel mould pre-exposed to three different temperatures: -196 ºC, 20 ºC and 650 ºC. The aim of the study was to determine the difference in the microstructure and mechanical properties between the castings formed in a cold mould and those solidifying under near-equilibrium conditions in a mould pre-heated to 650 ºC. Solidification at a low temperature led to dispersion of the structure elements as well as supersaturation of the solid solution of aluminium in magnesium. The heat treatment results indicate that the alloy solidified in the mould pre-exposed to 20 ºC can be successfully aged (heat treated to the T5 temper). It was found that the effect of the ageing process (T5 temper) was greater than the effect of the microstructure fragmentation, which was due to rapid solidification. The ageing results were assessed by comparing the microstructure and mechanical properties of AZ91 brought to the T5 condition with those obtained for the material in the T6 condition.
Go to article

Authors and Affiliations

A. Dziadoń
T. Bucki
P. Porzucek
Download PDF Download RIS Download Bibtex

Abstract

Al-enriched layer was formed on a magnesium substrate with use of casting. The magnesium melt was cast into a steel mould with an

aluminium insert placed inside. Different conditions of the casting process were applied. The reaction between the molten magnesium and

the aluminium piece during casting led to the formation of an Al-enriched surface layer on the magnesium substrate. The thickness of the

layer was dependent on the casting conditions. In all fabricated layers the following phases were detected: a solid solution of Mg in Al,

Al3Mg2, Mg17Al12 and a solid solution of Mg in Al. When the temperature of the melt and the mould was lower (variant 1 – 670o

C and 310 o

; variant 2 – 680o

C and 310o

C, respectively) the unreacted thin layer of aluminium was observed in the outer zone. Applying higher

temperatures of the melt (685o

C) and the mould (325o

C) resulted in deep penetration of aluminium into the magnesium substrate. Areas

enriched in aluminium were locally observed. The Al-enriched layers composed mainly of Mg-Al intermetallic phases have hardness from

187-256 HV0.1.

Go to article

Authors and Affiliations

R. Mola
T. Bucki
A. Dziadoń
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.

Go to article

Authors and Affiliations

A. Dziadoń
ORCID: ORCID
E. Musiał
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 magnesium alloy were butt-welded using a CO2 laser. The non-equilibrium solidification of the laser-melted metal caused fragmentation of the weld microstructure as well as the supersaturation of a solid solution of aluminium in magnesium, which enabled the T5 ageing of the weld. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens, both as-welded and post-weld T5 aged, fractured outside it. During the ageing of the supersaturated joint, which involved heat treating it to the T6 condition, the weld was the region where discontinuous precipitation was observed and this was the location of fracture in the tensile specimens. Thus, the strength properties of welded, supersaturated and aged AZ91 were much worse than when the non-welded material was T6 tempered.
Go to article

Authors and Affiliations

A. Dziadoń
1
ORCID: ORCID
E. Musiał
1

  1. Kielce University of Technology, Metals Science and Materials Technologies, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Poland

This page uses 'cookies'. Learn more