Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper details a finite element analysis of the behaviour of Si-Al geopolymer concrete beam reinforced steel bar under an impulsive load and hyper velocity speed up to 1 km/s created by an air blast explosion. The initial torsion stiffness and ultimate torsion strength of the beam increased with increasing compressive strength and decreasing stirrup ratio. The study involves building a finite element model to detail the stress distribution and compute the level of damage, displacement, and cracks development on the geopolymer concrete reinforcement beam. This was done in ABAQUS, where a computational model of the finite element was used to determine the elasticity, plasticity, concrete tension damages, concrete damage plasticity, and the viability of the Johnson-Cook Damage method on the Si-Al geopolymer concrete. The results from the numerical simulation show that an increase in the load magnitude at the midspan of the beam leads to a percentage increase in the ultimate damage of the reinforced geopolymer beams failing in shear plastic deformation. The correlation between the numerical and experimental blasting results confirmed that the damage pattern accurately predicts the response of the steel reinforcement Si-Al geopolymer concrete beams, concluded that decreasing the scaled distance from 0.298 kg/m3 to 0.149 kg/m3 increased the deformation percentage.
Go to article

Authors and Affiliations

Nurul Aida Mohd Mortar
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Kamarudin Hussin
1
ORCID: ORCID
Rafiza Abdul Razak
3
ORCID: ORCID
Sanusi Hamat
4
ORCID: ORCID
Ahmad Humaizi Hilmi
4
Noorfifi Natasha Shahedan
1
ORCID: ORCID
Long Yuan Li
5
ORCID: ORCID
Ikmal Hakem A. Aziz
1
ORCID: ORCID

  1. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Malaysia
  4. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Malaysia
  5. University of Plymouth, School of Marine Science and Engineering, Plymouth PL4 8AA, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Dolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers.
Go to article

Authors and Affiliations

Emy Aizat Azimi
1
M.A.A. Mohd Salleh
1
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Ikmal Hakem A. Aziz
1
ORCID: ORCID
Kamarudin Hussin
1
ORCID: ORCID
Jitrin Chaiprapa
2
ORCID: ORCID
Petrica Vizureanu
3
ORCID: ORCID
Sorachon Yoriya
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Jerzy J. Wyslocki
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (Unimap), Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), Perlis, Malaysia
  2. Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
  3. ”Gheorghe Asachi” Technical University, Faculty of Materials Science and Engineering, Blvd. D. Mangeron 71, 700050 Lasi, Romania
  4. National Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Phaholyothin Road, Klong 1, Klongluang, Pathumthani 12120, Thailand
  5. Czestochowa University of Technology, Department of Physics, 42-200, Czestochowa, Poland

This page uses 'cookies'. Learn more