Search results

Filters

  • Journals

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an analysis of gaseous sensors based on a surface acoustic wave (SAW) by means of the equivalent model theory. The applied theory analyzes the response of the SAW sensor in the steady state affected by carbon monoxide (CO) in air. A thin layer of WO3 has been used as a sensor layer. The acoustical replacing impedance of the sensor layer was used, which takes into account the profile of the concentration of gas molecules in the layer. Thanks to implementing the Ingebrigtsen equation, the authors determined analytical expressions for the relative changes of the velocity of the surface acoustic wave in the steady state. The results of the analysis have shown that there is an optimum thickness of the layer of CO sensor at which the acoustoelectric effect (manifested here as a change in the acoustic wave velocity) is at its highest. The theoretical results were verified and confirmed experimentally
Go to article

Authors and Affiliations

Tomasz Hejczyk
Marian Urbańczyk
Tadeusz Pustelny
Wiesław Jakubik
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of numerical analysis of the SAW gas sensor in the steady and non-steady states. The effect of SAW velocity changes vs surface electrical conductivity of the sensing layer is predicted. The conductivity of the porous sensing layer above the piezoelectric waveguide depends on the profile of the diffused gas molecule concentration inside the layer. The Knudsen’s model of gas diffusion was used.

Numerical results for the effect of gas CH4 on layers: WO3, TiO2, NiO, SnO2 in the steady state and CH4 in the non-steady state in recovery step in the WO3 sensing layer have been shown. The main aim of the investigation was to study thin film interaction with target gases in the SAW sensor configuration based on simple reaction-diffusion equation.

The results of the numerical analysis allow to select the sensor design conditions, including the morphology of the sensor layer, its thickness, operating temperature, and layer type. The numerical results basing on the code elaborated numerical system (written in Python language), were analysed. The theoretical results were verified and confirmed experimentally.

Go to article

Authors and Affiliations

Tomasz Hejczyk
Tadeusz Pustelny
Bartłomiej Wszołek
Wiesław Jakubik
Erwin Maciak
Download PDF Download RIS Download Bibtex

Abstract

A layered sensor structure of metal-free phthalocyanine H2Pc (~160 nm) with a very thin film of palladium (Pd ~20 nm) on the top, has been studied for hydrogen gas-sensing application at relatively low temperatures of about 30°C and about 40°C. The layered structure was obtained by vacuum deposition (first the phthalocyanine Pc and than the Pd film) onto a LiNbO3Y- cut Z-propagating substrate, making use of the Surface Acoustic Wave method, and additionally (in this same technological processes) onto a glass substrate with a planar microelectrode array for simultaneous monitoring of the planar resistance of the layered structure. In such a layered structure we can detect hydrogen in a medium concentration range (from 0.5 to 3% in air) even at about 30°C. At elevated temperature up to about 40°C the differential frequency increases proportionally (almost linearly) to the hydrogen concentration and the response reaches its steady state very quickly. The response times are about 18 s at the lowest 0.5% hydrogen concentration to about 42 s at 4% (defined as reaching 100% of the steady state). In the case of the investigated layered structure a very good correlation has been observed between the two utilized methods - the frequency changes in the SAW method correlate quite well with the decreases of the layered structure resistance.

Go to article

Authors and Affiliations

W.P. Jakubik
M. Urbańczyk
E. Maciak
T. Pustelny

This page uses 'cookies'. Learn more