Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of computer techniques at the design stage of industrial facilities is essential in modern times. The ability to shorten the time required to develop a project and assess the safety of the use of assumptions, often enables the reduction of the costs incurred in the future. The possibility to skip expensive prototype tests by using 3D prototyping is why it is currently the prevailing model in the design of industrial facilities, including in the mining industry. In the case of a longwall working, its stability requires the maintenance of the geometric continuity of floor rocks in cooperation with a powered roof support.

The paper investigates the problem of longwall working stability under the influence of roof properties, coal properties, shield loading and the roof-floor interaction. The longwall working stability is represented by an index, factor of safety (FOS), and is correlated with a previously proposed roof capacity index ‘g‘. The topic of the paper does address an issue of potential interest.

The assessment of the stability of the roof in longwalls was based on the numerical analysis of the factor of safety (FOS), using the Mohr-Coulomb stress criterion. The Mohr-Coulomb stress criterion enables the prediction of the occurrence of failures when the connection of the maximum tensile principal stress σ1 and the minimum compressive principal stress σ3 exceed relevant stress limits. The criterion is used for materials which indicates distinct tensile and compressive characteristics. The numerical method presented in the paper can be utilized in evaluating the mining natural hazards through predicting the parameters, which determine the roof maintenance in the longwall working.

One of the purposes of the numerical analysis was to draw attention to the possibilities that are currently created by specialized software as an important element accompanying the modern design process, which forms part of intelligent underground mining 4.0.

Go to article

Authors and Affiliations

Tomasz Janoszek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The mining in seams with a high methane content by means of a longwall system, under conditions of high extraction concentration, results in exceeding methane concentrations allowed by the regulations at workings of the longwall environment, with the effect of mining machines’ standstill periods. The paper is a part of a study supporting the development of a system for shearing cutting speed control at the longwall, which should substantially reduce the production standstills due to exceeded limits and switching off the supply of electric equipment. Such a control system may be appropriate for longwalls ventilated using “Y” and “short Y” methods. Efficient Computer simulations of the 3D airflow and methane propagation may assist the design and initial evaluation of the control system performance. First chapters present studies that are necessary for a proper formulation of the properties of the longwall model. Synthetic analysis of production during the period of longwall operation allowed one to choose the input assumptions to carry out ventilation-methane computations in a CFD numerical model of longwall Z-11. This study is followed by a description of the model that is used for a case study, considering three variants of the shearer position. Finally, initial simulation results and directions of further studies are discussed.
Go to article

Bibliography

[1] S. Prusek, E. Krause, J. Skiba, Designing coal panels in the conditions of associated methane and spontaneous fire hazards 30 ( 4), 525-531 (2020). DOI: https://doi.org/10.1016/j.ijmst.2020.05.015
[2] W. Dziurzyński, A. Krach, T. Pałka, Shearer control algorithm and identification of control parameters. Arch. Min. Sci. 63 (3), 537-552 (2018).
[3] W. Dziurzyński, A. Krach, J. Krawczyk, T. Pałka, Numerical Simulation of Shearer Operation in a Longwall District. Numerical Simulation of Shearer Operation in a Longwall District. Energies 13, 5559 (2020). DOI: https://doi.org/10.3390/en13215559
[4] E. Krause, A. Przystolik, B. Jura, Warunki bezpieczeństwa wentylacyjno-metanowego w ścianach o wysokiej koncentracji wydobycia. XXI Międzynarodowa Konferencja Naukowo-techniczna Górnicze Zagrożenia Naturalne. 6-8.11.2019 r., Jawor k. Bielska Białej.
[5] A. Walentek, T. Janoszek, S. Prusek, A. Wrana, Influence of longwall gateroad convergence on the process of mine ventilation network-model tests. International Journal of Mining Science and Technology 29, (4), 585-590 (2019).
[6] A. Juganda, J. Brune, G. Bogin, J. Grubb, S. Lolon, CFD modeling of longwall tailgate ventilation conditions. In: Proceedings of the 16th North American mine ventilation. Golden, CO; 2017.
[7] E. Krause, Z. Lubosik, Wpływ koncentracji wydobycia podczas eksploatacji pokładów silnie metanowych na wydzielanie się metanu do środowiska ścian. 9th International Symposium on Occupational Heat and Safety Petrosani Rumunia. October 3rd 2019 r.
[8] E. Krause, J. Skiba, B. Jura, Overview of Ventilation Characteristic, Practices and regulations in Poland. XXVIII Szkoła Eksploatacji Podziemnej, Kraków, 25-27.02.2019 r. https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/12._Krause_Skiba_Jura.pdf
[9] E. Krause, B. Jura, J. Skiba, Mining speed control in the coal panel with high coal output concentration. Kontrola prędkości urabiania w ścianach o wysokiej koncentracji wydobycia. Spotkanie Grupy Roboczej Ekspertów ds. metanu z kopalń Europejskiej Komisji Gospodarczej ONZ. Genewa 7-8.11.2019 r.
[10] J. Qin, Q. Qingdong, H. Guo, CFD simulations for longwall gas drainage design optimization. International Journal of Mining Science and Technology 27 (5), 777-782 (2017). DOI: https://doi.org/10.1016/j.ijmst.2017.07.012
[11] E. Krause, Ocena i zwalczanie zagrożenia metanowego w kopalniach węgla kamiennego. Prace Naukowe GIG nr 878. Katowice 2009.
[12] K .M. Tanguturi, R.S. Balusu, Computational fluid dynamics simulations for investigation of parameters affecting goaf gas distribution. Journal of Mining and Environment 9, 3, 547-557 (2018). DOI: https://doi.org/10.22044/jme.2018.5960.1410
[13] G . Xu, K.D. Luxbacher, S. Ragab, J. Xu, X. Ding, Computational fluid dynamics applied to mining engineering: a review. International Journal of Mining, Reclamation and Environment 31 (4), 251-275 (2017).
[14] Z . Wang, T. Ren, L. Ma, J. Zhang, Investigations of ventilation airflow characteristics on a longwall face – a computational approach. Energies 11, 1564 (2018). DOI: https://doi.org/10.3390/en11061564
[15] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results, Journal of Natural Gas Science and Engineering 43, 242-253 (2017).
[16] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part II: Parametric studies. Journal of Natural Gas Science and Engineering 43, 242-253 (2017).
[17] SolidWorks Flow Simulation 2012 Technical Reference. https://d2t1xqejof9utc.cloudfront.net/files/18565/SW_CFD_technical_reference.pdf?1361897013
Go to article

Authors and Affiliations

Tomasz Janoszek
1
ORCID: ORCID
Jerzy Krawczyk
2
ORCID: ORCID

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Strata Mechanics Research Institute, Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland

This page uses 'cookies'. Learn more