Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Potentially hazardous side-channels of complex geometry need to be investigated using detailed hydraulic physical models. This study aims to analyse the cross-waves pattern and pulsating flow using a side-channel spillway physical model. This study compares the cross-waves pattern were measured using an experimental installation set to generate cross-waves on the surface (original series) with another structure that did not produce cross-waves (modified series). The results showed that the geometry of the left wall caused instability in flow patterns and secondary flows. The starting point of Q 2 discharge was detected by minor turbulence on the water surface near the left wall at a water depth of 3.3 m at the starting point of the wall, but with no overtopping. Cross-waves formed downstream at the right wall crosswise, lower than at the left wall. The height of the cross-wave increased substantially from Q 100 to Q 1000 discharges leading to overtoppings near the left wall at a water depths of 4.2 and 5.0 m at the starting point of the wall, and near the right wall at a water depths of 3.8 and 4.0 m at the upstream point of the wall. The modifications provided optimal hydraulic conditions, i.e. elimination of cross-waves and non-uniform flows. The Vedernikov and Montouri numbers showed that both original and modified series did not enter the area where the pulsating flow occurred. This indicated that both series were free from the pulsating flow.
Go to article

Authors and Affiliations

Azmeri Azmeri
1
ORCID: ORCID
Chairatun Ummah
1
ORCID: ORCID
Faris Zahran Jemi
2
ORCID: ORCID
Imam Faudli
1
ORCID: ORCID
Qurratul 'Aini Benti Nasaiy
1

  1. Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Jl. Tgk. Syech Abdur-Rauf No. 7, Darussalam, 23111, Banda Aceh, Indonesia
  2. Universitas Syiah Kuala, Engineering Faculty, Electrical Engineering Department, Darussalam, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Previous researchers have been widely studied the equation for calculating the energy dissipation in USBR Type IV, applied in the stilling basin structure as an energy dissipator. However, inefficient energy dissipating basins are commonly found in the field due to the large discharge and high water head, potentially damaging the bottom of the energy dissipating basin and its downstream river. Therefore, an energy dissipator plan fulfilling the safe specifications for the flow behaviour that occurred is required. This study aimed to determine the variation of the energy dissipators and evaluate their effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was undertaken on the USBR Type IV spillway system. The novelty of this experiment showed that combination and modification dissipation features, such as floor elevation, end threshold and riprap lengthening, could effectively dissipate the impact of energy downstream. The final series exhibited a significantly higher Lj/y1 ratio, a favourable condition due to the compaction of the hydraulic jump. There was also a significant increase in the downstream tailwater depth (y2) during the jump formation. Therefore, the final series energy dissipator was better in the stilling basin design for hydraulic jump stability and compaction. The increase in energy dissipation for the final series type was the highest (98.4%) in Q2 and the lowest (84.8%) in Q10 compared to the original series. Therefore, this type can better reduce the cavitation risk damaging to the structure and downstream of the river.
Go to article

Authors and Affiliations

Alfiansyah Yulianur Bantacut
1
ORCID: ORCID
Azmeri Azmeri
1
ORCID: ORCID
Faris Zahran Jemi
2
ORCID: ORCID
Ziana Ziana
1
ORCID: ORCID
Muslem Muslem
1

  1. Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Syech Abdur-Rauf No 7, Darussalam, 23111, Banda Aceh, Indonesia
  2. Universitas Syiah Kuala, Faculty of Engineering, Electrical Engineering Department, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The construction of the Keuliling Reservoir aims to accommodate and utilise water for agricultural purposes. In this research, soil erosion modelling using the USLE method showed that the level of erosion hazard for each Keuliling Reservoir sub-watershed was classified into low-moderate. Land erosion occurred in the area around the reservoir inundation is the most significant contribution to the magnitude of erosion (38.62 Mg∙ha–1∙y–1. Based on the point of sediment sampling in the Keuliling reservoir, the sediment volume was 1.43 Mg∙m–3. So, the volumetric sediment input from the Keuliling reservoir watershed is 20.918,32 m3∙y–1. The degradation of reservoir function due to sedimentation can affect reservoir services. The ability to estimate the rate of watershed surface erosion and sediment deposition in the reservoir is vital for reservoir sustainability. Besides the land erosion in the Keuliling Reservoir, there are also other potential sources of erosion that can reduce the capacity of the reservoir, i.e. the rate of sedimentation from a reservoir cliff landslide. The USLE estimation results show that the soil erosion analysis provides important and systematic information about nature, intensity and spatial distribution in the watershed and sediment volume in the Keuliling Reservoir. This finding allows the identification of the most vulnerable areas and the type of erosion dominant for long-term land management.
Go to article

Bibliography

ADEDIJI A., TUKUR A.M., ADEPOJU K.A. 2010. Assessment of Revised Universal Soil Loss Equation (RUSLE) in Katsina Area, Katsina State of Nigeria using Remote Sensing (RS) and Geographic Information System (GIS). Iranian Journal of Energy and Environment. Vol. 1(3) p. 255–264.
ALEXAKIS D.D., HADJIMITSIS D.G., AGAPIOU A. 2013. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmospheric Research. Vol. 131 p. 108–124. DOI 10.1016/j.atmosres.2013.02.013.
ARIF A. 2013. Study of erodibility level of several land types in Baturagung Mountains Putat Village and Nglanggeran District Patuk Gunungkidul Regency. Information. Vol. 39. No. 2 p. 15– 31. DOI 10.21831/informasi.v0i2.4441.
ARMIDO A., AZMERI A., FATIMAH E., NURBAITI N., YOLANDA S.N. 2020. The sedimentation datasets of Keuliling Reservoir. Data in Brief. Vol. 32, 106181. DOI 10.1016/j.dib.2020.106181.
ARNOLDUS H.M.J. 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. In: Assessment of erosion. Eds. M. De Boodt, D. Gabriels. Chichester, UK. Wiley p. 127–132.
ARSYAD S. 2012. Conservation of Land and Water. Second edition. IPB Press, Bogor. ISBN 979-493-003-2 pp. 96. ASDAK C. 2014. Hydrology and watershed management. 3rd edition. Yogyakarta. Gajah Mada University Press. ISBN 979-420-737-3 pp. 625.
AZMERI A., LEGOWO S., REZKYNA N. 2020. Interphase modeling of soil erosion hazard using a Geographic Information System and the Universal Soil Loss Equation. Journal of Chinese Soil and Water Conservation. Vol. 51(2) p. 65–75. DOI 10.29417/JCSWC.202006_51(2).0003.
AZMERI, HADIHARDAJA I.K., VADYA R. 2016. Identificationof flashfloodhazard zones in the small mountainous watershed of Aceh Besar Regency, Aceh Province, Indonesia. The Egyptian Journal of Remote Sensing and Space Sciences. Vol. 19 p. 143–160. DOI 10.1016/j.ejrs.2015.11.001.
BENZER N. 2010. Using the geographical information system and remote sensing techniques for soil erosion assessment. Polish Journal of Environmental Study. Vol. 19(5) p. 881–886.
BISWAS S. 2012. Estimation of soil erosion using remote sensing and GIS and prioritization of catchments. International Journal of Emerging Technology and Advanced Engineering. Vol. 2(7) p. 124–128.
BWS Sumatera I. 2018. Report of Survey and Sedimentation Study of Keuliling Reservoir. Balai Wilayah Sungai Sumatera I. Banda Aceh pp. 181.
CHATTERJEE S., KRISHNA A.P., SHARMA A.P. 2014. Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences. Vol. 71(1) p. 357–374.
DABRAL P.P., BAITHURI N., PANDEY A. 2008. Soil erosion assessment in a hilly catchment of North eastern India using USLE, GIS and remote sensing. Water Resources Management. Vol. 22(12) p. 1783–1798. DOI 10.1007/s11269-008-9253-9.
DEMIRCI A., KARABURUN A. 2012. Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, Northwest Turkey. Environmental Earth Sciences. Vol. 66 p. 903–913.
DUTA S. 2016. Soil erosion, sediment yield and sedimentation of reservoir: A review. Modeling Earth Systems and Environment. Vol. 2, 123. DOI 10.1007/2Fs40808-016-0182-y.
DOUCET-BEER E. 2011. Modelling alternative agricultural scenarios using RUSLE and GIS to determine erosion risk in the Chippewa River Watershed, Minnesota [online]. PhD Thesis. University of Michigan pp. 87. [Access 10.03.2021]. Avalable at: http://hdl.handle.net/2027.42/88166.https://deepblue.lib.umich.edu/bit-stream/handle/2027.42/88166/EDoucetBeer_MS_Practicum_F-inal.pdf?sequence=1&isAllowed=y
FU B.J., ZHAO W.W., CHEN L.D., ZHANG Q.J., LU Y.H., GULINCK H., POESEN J. 2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation & Development. Vol. 16, 7385. DOI 10.1002/ldr.646.
HAREGEWEYN N., POESEN J., NYSSEN J., GOVERS G., VERSTRAETEN G., DECKERS J., MOEYERSONS J., HAILE M., DE VENTE J. 2008. Sediment yield variability in Northern Ethiopia: A quantitative analysis of its controlling factors. Catena. Vol. 75 p. 65–76. DOI 10.1016/j.catena.2008.04.011.
HOYOS N. 2005. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena. Vol. 63 (1) p. 85–108. DOI https://doi.org/10.1016/j.catena.2005.05.012.
IONUŞ O., BOENGIU S., LICURICI M., POPESCU L., SIMULESCU D. 2013. Mapping soil erosion susceptibility using GIS techniques within the Danube Floodplain, the Calafat – Turnu Măgurele Sector (Romania). Journal of the Geographical Institute “Jovan Cvijic”, SASA 2013. Vol. 63. Iss. 3. Conference Issue: International Conference Natural Hazards – Link between Science and Practice p. 73–82. DOI 10.2298/IJGI1303073I.
ISSA L.K., LECH-HAB K.B.H., RAISSOUNI A., EL ARRIM A. 2016. Cartographie quantitative du risque d’erosion des sols par approche SIG/USLE au niveau dubassin versant Kalaya (Maroc Nord Occidental) [Quantitative mapping of soil erosion risk using GIS/USLE approach at the Kalaya Watershed (North Western Morocco)]. Journal of Materials and Environmental Science. Vol. 7(8) p. 2778–2795.
JIANG B. 2013. GIS-based time series study of soil erosion risk using the Revised Universal Soil Loss Equation (RUSLE) model in a microcatchment on Mount Elgon, Uganda. MSc Thesis. Department of Earth and Ecosystem Sciences Physical Geography and Ecosystems Analysis Lund University, Sweden pp. 51.
KALSUM U., YUNUS Y., FERIJAL T. 2017. Meureudu Watershed Conservation Directive using Geographic Information Systems. Vol. 2. No. 2. p. 423–429.
KAMUJU N. 2016. Soil erosion and sediment yield analysis using prototype & enhanced SATEEC GIS system models. International Journal of Advanced Remote Sensing and GIS. Vol. 5(1) p. 1471– 1482. DOI 10.23953/cloud.ijarsg.39
KIRONOTO B.A. 2003. Sediment Transpor. Civil Engineering Graduate Program UGM, Yogyakarta pp. 100.
KOTHYARI U.C., JAIN S.K. 1997. Sediment yield estimation using GIS. Hydrology Science Journal. Vol. 42 p. 833–843. DOI 10.1080/0262666970949208.
KOURGIALAS N.N., KOUBOURIS G.C., KARATZAS G.P., METZIDAKIS I. 2016. Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Natural Hazards. Vol. 83(1) p. 65–81. DOI 10.1007/s11069-016-2354-5.
KURNIA U., SUWARDJO H. 1984. Erosion sensitivity of several soil types in Java according to the USLE Method. Pemberitaan Penelitian Tanah dan Pupuk. No. 3 p. 17–20.
LAL R. 2001. Soil degradation by erosion. Land Degradation and Development. Vol. 12(6) p. 519–539. DOI 10.1002/ldr.472.
LEGOWO S., HADIHARDAJA I.K., AZMERI 2009. Estimation of bank erosion due to reservoir operation in cascade (Case study: Citarum cascade reservoir). ITB ITB Journal of Engineering Science. Vol. 41(2) p. 148–166. DOI 10.5614/itbj.eng.sci.2009.41.2.5
LIM J.K., SAGONG M., ENGEL B.A., TANG Z., CHOI J., KIM K. 2005. GIS based sediment assessment tool. Catena. Vol 64 p. 61–80. DOI 10.1016/J.CATENA.2005.06.013.
MERRITT W.S., LETCHER R.A., JAKEMAN A.J. 2003. A review of erosion and sediment transport models. Environmental Modelling and Software. Vol. 18 p. 761–799. DOI 10.1016/S1364-8152(03)00078-1.
MEUSBURGER K., BÄNNINGER D., ALEWELL C. 2010. Estimating vegeta-tion parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery. International Journal of Applied Earth Observation and Geoinformation. Vol. 12 p. 201–207. DOI 10.1016/j.jag.2010.02.009.
NAMR K.I., MRABET R. 2004. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco. Journal of African Earth Sciences. Vol. 39 p. 485–489. DOI 10.1016/j.jafrearsci.2004.07.016.
PANDEY A., CHOWDARY V.M., MAL B.C. 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management. Vol. 21(4) p. 729–746. DOI 10.1007/s11269-006-9061-z.
PARK S., OH C., JEON S., JUNG H., CHOI C. 2011. Soil erosion risk in Korean watershed, assessed using Revised Universal Soil Loss Equation. Journal Hydrology. Vol. 399(3–4) p. 263–273. DOI 10.1016/j.jhydrol.2011.01.004.
PEROVIĆ V., ŽIVOTIĆ L., KADOVIĆ R., ĐORĐEVIĆ A., JARAMAZ D., MRVIĆ V., TODOROVIĆ M. 2013. Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environmental Earth Sciences. Vol. 68 p. 115–128. DOI 10.1007/s12665-012-1720-1.
PRASANNAKUMAR V., VIJITH H., ABINOD S., GEETHA N. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers. Vol. 3(2) p. 209–215. DOI 10.1016/j.gsf.2011.11.003.
RAHMAN M.R., SHI Z.H., CHONGFA C. 2009. Soil erosion hazard evaluation – An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling. Vol. 220. Iss. 13–14 p. 1724–1734. DOI 10.1016/j.ecolmodel.2009.04.004.
SAHU A., BAGHEL T., SINHA M.K., AHMAD I., VERMA M.K. 2017. Soil erosion modeling using Rusle and GIS on Dudhawa catchment. International Journal of Applied Environmental Sciences. Vol. 12. No. 6 p. 1147–1158.
SHEIKH A.H., PALRIA S., ALAM A. 2011. Integration of GIS and Universal Soil Loss Equation (USLE) for soil loss estimation in a Himalayan watershed. Recent Research in Science and Technology. Vol. 3(3) p. 51–57.
Peraturan Direktur Jenderal Bina Pengelolaan Daerah Aliran Sungai dan Perhutanan Sosial nomor: P. 3/V-SET/2013 tentang pedoman identifikasi karakteristik daerah aliran sungai [The Regulation of the Director-General of Watershed Management and Social Forestry of the Republic of Indonesia number P. 3/V-SET/2013 regarding guidelines for identifying watershed characteristics] [online]. [Access 15.02.2020]. Available at: https://www.course-hero.com/file/44617251/P3-V-SET-2013-PEDOMAN-IDENTI-FIKASI-KARAKTERISTIK-DAERAH-ALIRAN-SUNGAIpdf/
Peraturan Menteri Kehutanan Republik Indonesia nomor: P. 61 /Menhut-II/2014 tentang monitoring dan evaluasi pengelolaan daerah aliran sungai [Regulation of the Minister of Forestry of the Republic of Indonesia number: P. 61 /Menhut-II/2014 regarding monitoring and evaluation of watershed management] [online]. [Access 15.02.2020]. Available at: http://satudata.semarangkota.go.id/adm/file/20171004150653PERMENKEMENHUTNo-morP.61-MENHUT-II-2014Tahun2014kemenhutnop.61-menhut-II-2014.pdf
Qanun Kabupetan Aceh Besar nomor 4 tahun 2013 tentang rencana tata ruang Willayah Kabupaten Aceh Besar tahun 2012–2032 [The Regulation of the spatial plan for the Aceh Besar Regency, 2012– 2032] [online]. [Access 15.02.2020]. Available at: http://bappeda.acehbesarkab.go.id/?p=820
TATIPATA W.H., SOEKARNO I., SABAR A., DAN LEGOWO S. 2015. Analysis of settle sediment volumes after t-year reservoirs in operation (Case study: Cirata Reservoir). Journal of Civil Engineering Theoretical and Applied Journal of Civil Engineering. Vol. 22(3) p. 235–242. DOI 10.5614/jts.2015.22.3.7.
UDDIN K., MURTHY M.S.R., SHAHRIAR M., WAHID MIR A., MATIN 2016. Estimation of Soil Erosion Dynamics in the Koshi Basin Using GIS and Remote Sensing to Assess Priority Areas for Conserva-tion. PLOS ONE. Vol. 1(3), e0150494. DOI 10.1371/journal.pone.0150494.
VERSTRAETEN G., POESEN J. 2001. Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yield. Earth Surface Processes and Landforms. Vol. 26 p. 375–394. DOI 10.1002/esp.186.
VIJITH H., MADHU G. 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environmental Geology. Vol. 55(7) p. 1397–1405. DOI 10.1007/s00254-007-1090-2.
WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses – A guide to conservation planning. Agriculture Handbook. No. 537. Washington, DC, USA. US Department of Agriculture Science and Education Administration pp. 168.
XU Y., SHAO X., KONG X., PENG J., CAI Y. 2008. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment. Vol. 141 p. 275–286. DOI 10.1007/s10661-007-9894-9.
ZARFL C., LUCIA A. 2018. The connectivity between soil erosion and sediment entrapment in reservoirs. Current Opinion in Environ-mental Science & Health. Vol. 5 p. 53–59. DOI https://dx.doi.org/10.1016/j.coesh.2018.05.001.
ZHANG K., SHU A., XU X., YANG Q., YU B. 2008. Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environments. Vol. 72 p. 1002–1011. DOI 10.1016/j.jaridenv.2007.11.018.
Go to article

Authors and Affiliations

Azmeri Azmeri
1
ORCID: ORCID
Nurbaiti Nurbaiti
2
Nurul Mawaddah
1
Halida Yunita
1
ORCID: ORCID
Faris Zahran Jemi
3
ORCID: ORCID
Devi Sundary
1
ORCID: ORCID

  1. Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  2. Ministry of Public Works and Housing (PUPR) BWS Sumatera-I, Indonesia
  3. Universitas Syiah Kuala, Engineering Faculty, Electrical Engineering Department, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Energy dissipator functions to dissipate the river-flow energy to avoid longitudinal damage to the downstream river morphology. An optimal energy dissipator planning is essential to fulfilling safe specifications regarding flow behavior. This study aims to determine the variation of energy dissipators and evaluate its effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was carried out on the existing weir condition (two steps). It was also carried out on four stepped-weir variations, i.e., three-step, three-step with additional baffle blocks at the end sills, four-step, and six-step. Dimensional analysis was employed to correlate the different parameters that affect the studied phenomenon. The study shows a three-step jump shows a significantly higher Lj/y1 ratio, which is an advantage to hydraulic jumps’ compaction. The comparison of energy dissipation in all weir variations shows that the three-stepped weir has wasted more energy than other types. The energy dissipation increase of the three-step type is 20.41% higher than the existing type’s energy dissipation and much higher than other types. The dimensions of the energy dissipation basin are the ratio of the width and height of the stairs (l/h) of the three-step type (2.50). Therefore, this type is more optimal to reduce the cavitation risk, which damages the river structure and downstream area.
Go to article

Bibliography

ABBASPOUR A., PARVINI S., DALIR A.H. 2016. Effect of buried plates on scour profilesdownstream of hydraulic jump in open channels with horizontal and reverse bed slopes. Water Science and Engineering. Vol. 9(4) p. 329–335. DOI 10.1016/j.wse.2017.01.003.

ABDEL AAL G.M., SOBEAH M., HELAL E., EL-FOOLY M. 2018. Improving energy dissipation on stepped spillways using breakers. Ain Shams Engineering Journal. Vol. 9(4) p. 1887–1896. DOI 10.1016/j.asej.2017.01.008.

ALAM R.R.R., TAUFIQ M. 2018. Kajian hidrolika pelimpah samping pada model fisik Bendungan Pasuruhan Kabupaten Magelang Provinsi Jawa Tengah dengan Skala 1:60 [Study of side spillway hydraulics on physical model of Pasuruan Reservoir, Magelang Regency, Central Java Province with a scale of 1:60]. Art. of MSc Thesis. Water Engineering, Engineering Faculty – Brawijaya University p. 1–9.

ALTALIB A.N., MOHAMMED A.Y., HAYAWI H.A. 2019. Hydraulic jump and energy dissipation downstream stepped weir. Flow Measurement and Instrumentation. Vol. 69, 101616. DOI 10.1016/j.flowmea-sinst.2019.101616.

AZMERI A., LEGOWO S., REZKYNA N. 2020. Interphase modeling of soil erosion hazard using a Geographic Information System and the Universal Soil Loss Equation. Journal of Chinese Soil and Water Conservation. Vol. 51(2) p. 65–75. DOI 10.29417/JCSWC.202006_51(2).0003.

BARANI G.A., RAHNAMA M.B., SOHRABIPOOR N. 2005. Investigation of flowenergy dissipation over different stepped spillways. American Journal of Applied Sciences. Vol. 2(6) p. 1101–1105. DOI 10.3844/ajassp.2005.1101.1105.

BASRI H., AZMERI A., WESLI W., JEMI F.Z. 2020. Simulation of sediment transport in Krueng Baro River, Indonesia, Jamba. Journal of Disaster Risk Studies. Vol. 12(1), a934 p. 1–9. DOI 10.4102/jamba.v12i1.934.

BEJESTAN M.S., NEISI K. 2009. A new roughened bed hydraulic jump stilling basin. Asian Journal of Applied Sciences. Vol. 2(5) p. 436– 445. DOI 10.3923/ajaps.2009.436.445.

CHANSON H. 1994. Comparison of energy dissipation between nappe and skimming flowregimes on stepped chutes. Journal of Hydraulic Reserch. Vol. 32(2) p. 213–218. DOI 10.1080/00221686.1994.10750036.

CHANSON H. 2009. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics B/Fluids. Vol. 28(2) p. 191–210. DOI 10.1016/j.euromechflu.2008.06.004.

ELNIKHELY E.A. 2018. Investigation and analysis of scour downstream of a spillway, Ain Shams Engineering Journal. Vol. 9 (4) p. 2275– 2282. DOI 10.1016/j.asej.2017.03.008.

HUSAIN D., ALHAMID A.A., NEGM A.A.M. 2010. Length and depth of hydraulic jump in sloping channels. Journal of Hydraulic Research. Vol. 32(6) p. 899–910. DOI 10.1080/00221689409498697.

KARBASI M. 2016. Estimation of classical hydraulic jump length using teaching–learning based optimization algorithm. Journal of Materials and Environmental Science. Vol. 7(8) p. 2947–2954.

KIM Y., CHOI G., PARK H., BYEON S. 2015. Hydraulic jump and energy dissipation with sluice gate. Water. Vol. 7 p. 5115–5133. DOI 10.3390/w7095115.

LI L.X., LIAO H.S., LIU D., JIANG S.Y. 2015. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. Journal of Hydrodinamics. Vol. 27(4) p. 552–529. DOI 10.1016/S1001-6058 (15)60512-1.

SULISTIONO B., MAKRUP L. 2017. Study of hydraulic jump length coefficient with the leap generation by canal gate model. American Journal of Civil Engineering. Vol. 5(3) p. 148–154. DOI 10.11648/j.ajce.20170503.14.

TIWARI H.L., GOEL A. 2016. Effect of impact wall on energy dissipation in stilling basin. KSCE Journal of Civil Engineering. DOI 10.1007/s12205-015-0292-5.

WÜTHRICH D., CHANSON H. 2014. Hydraulics, air entrainment, and energy dissipation on a gabion stepped weir. Journal of Hydraulic Engineering. Vol. 140(9) p. 04014046.1–04014046.10. DOI 10.1061/(ASCE)HY.1943-7900.0000919.
Go to article

Authors and Affiliations

Azmeri Azmeri
1
ORCID: ORCID
Hairul Basri
2
ORCID: ORCID
Alfiansyah Yulianur
1
ORCID: ORCID
Ziana Ziana
1
ORCID: ORCID
Faris Zahran Jemi
3
ORCID: ORCID
Ridha Aulia Rahmah
1

  1. Syiah Kuala University, Faculty of Engineering, Civil Engineering Department, Jl. Tgk. Syeh Abdul Rauf No. 7, Darussalam – Banda Aceh 23111, Indonesia
  2. Syiah Kuala University, Faculty of Agriculture, Department of Soil Science, Banda Aceh, Indonesia
  3. Syiah Kuala University, Faculty of Engineering, Department of Electrical Engineering, Banda Aceh, Indonesia

This page uses 'cookies'. Learn more