Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare and analyze the gasification process of beech wood. The experimental investigation was conducted inside a gasifier, which can be operated in downdraft and updraft gasification system. The most important operating parameter studied in this paper was the influence of the amount of supply air on the temperature distribution, biomass consumption and syngas calorific value. The results show that the amount of air significantly influences the temperature in the combustion zone for the downdraft gasification process, where temperature differences reached more than 150 ◦C.The increased amount of air supplied to the gasifier caused an increase in fuel consumption for both experimental setups. Experimental results regarding equivalence ratio show that for value below 0.2, the updraft gasification is characterized by a higher calorific value of producer gas, while for about 0.22 a similar calorific value (6.5 MJ/Nm3) for both gasification configurations was obtained. Above this value, an increase in equivalence ratio causes a decrease in the calorific value of gas for downdraft and updraft gasifiers.

Go to article

Authors and Affiliations

Jacek Kluska
Mateusz Ochnio
Paweł Kazimierski
Dariusz Kardaś
Download PDF Download RIS Download Bibtex

Abstract

The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

Go to article

Authors and Affiliations

Jacek Kluska
Dariusz Kardaś
Paweł Kazimierski
Marek Klein
Download PDF Download RIS Download Bibtex

Abstract

Addressing the burgeoning issue of polymer waste management and disposal, chemical recycling, specifically the production of highquality oil, presents an enticing solution. This research paper delves into the process of plastic waste pyrolysis, focusing on polypropylene, and thoroughly examines the physico-chemical properties of the resulting pyrolytic oil. The oils, obtained from waste plastic pyrolysis (referred to as WPPO), are then blended with kerosene and utilized as fuel for a gas turbine engine. The primary objective of this investigation is to ascertain how the blend composition influences the performance and emission parameters of the micro gas turbine. In our findings, it was observed that all tested waste plastic pyrolysis blends displayed a trend towards escalating regulated emissions such as nitrogen oxides (NOx) with an average increase of 26% for polypropylene pyrolysis oil (PPO). The emission index (EI) for carbon monoxide (CO) was found to be relatively consistent across all fuel blends tested in this study. Interestingly, when considering the thrust specific fuel consumption (TSFC) within the EI calculation, blends of aviation kerosene and plastic oil showed lower values in comparison to the pure Jet A-1 fuel. Furthermore, an augmentation in the proportion of WPPO in the blends consequently led to an elevation in the exhaust gas temperature (an average increase of 8.7% for PPO). Interestingly, the fuel efficiency of the Jet engine, expressed as TSFC, demonstrated a decrease, with an average reduction of 13.8% observed for PPO.
Go to article

Authors and Affiliations

Tomasz Kacper Suchocki
1
Paweł Kazimierski
1
Katarzyna Januszewicz
2
Piotr Lampart
1
Dawid Zaniewski
1
Piotr Klimaszewski
1
Łukasz Witanowski
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  2. Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk,Poland

This page uses 'cookies'. Learn more