Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The emerging potentials in the electronics field, which facilitate the creation of complex projects with innovative functionalities, while maintaining low costs, are becoming even more appreciated by designers and engineers. In this manuscript, a telemetry system was designed and realized for monitoring main parameters of a racing vehicle. A STM32 Nucleo board acquires data from sensors installed on vehicle and transmits them to a base station. Acquired data are both stored on a SD card and wirelessly transmitted, for ensuring robustness/reliability of operation. The carried out tests confirm the truthfulness and compatibility of acquired data related to the vehicle parameters.

Go to article

Authors and Affiliations

P. Visconti
B. Sbarro
P. Primiceri
R. de Fazio
A. Lay-Ekuakille
Download PDF Download RIS Download Bibtex

Abstract

Detection of leakages in pipelines is a matter of continuous research because of the basic importance for a waterworks system is finding the point of the pipeline where a leak is located and − in some cases − a nature of the leak. There are specific difficulties in finding leaks by using spectral analysis techniques like FFT (Fast Fourier Transform), STFT (Short Term Fourier Transform), etc. These difficulties arise especially in complicated pipeline configurations, e.g. a zigzag one. This research focuses on the results of a new algorithm based on FFT and comparing them with a developed STFT technique. Even if other techniques are used, they are costly and difficult to be managed. Moreover, a constraint in the leak detection is the pipeline diameter because it influences accuracy of the adopted algorithm. FFT and STFT are not fully adequate for complex configurations dealt with in this paper, since they produce ill-posed problems with an increasing uncertainty. Therefore, an improved Tikhonov technique has been implemented to reinforce FFT and STFT for complex configurations of pipelines. Hence, the proposed algorithm overcomes the aforementioned difficulties due to applying a linear algebraic approach.

Go to article

Authors and Affiliations

Aimé Lay-Ekuakille
Giuseppe Griffo
Paolo Visconti
Patrizio Primiceri
Ramiro Velazquez
Download PDF Download RIS Download Bibtex

Abstract

Beamforming is an advanced signal processing technique used in sensor arrays for directional signal transmission

or reception. The paper deals with a system based on an ultrasound transmitter and an array of

receivers, to determine the distance to an obstacle by measuring the time of flight and – using the phase

beamforming technique to process the output signals of receivers for finding the direction from which the

reflected signal is received – locates the obstacle. The embedded beam-former interacts with a PID-based

line follower robot to improve performance of the line follower navigation algorithm by detecting and

avoiding obstacles. The PID (proportional-integral-derivative) algorithm is also typically used to control

industrial processes. It calculates the difference between a measured value and a desired set of points, then

attempts to minimize the error by adjusting the output. The overall navigation system combines a PID-based

trajectory follower with a spatial-temporal filter (beamformer) that uses the output of an array of sensors to

extract signals received from an obstacle in a particular direction in order to guide an autonomous vehicle

or a robot along a safe path.

Go to article

Authors and Affiliations

Patrick Kapita Mvemba
Aimé Lay-Ekuakille
Simon Kidiamboko
Md Zia Uhr Rahman
Download PDF Download RIS Download Bibtex

Abstract

Whatever the type of surgery related to inner organs, traditional or robotic, the contact with them during surgery is a key moment for pursuing the intervention. Contacts by means of surgery instruments namely scalpels, staples, clamps, graspers, etc. are decisive moments. False, and erroneous touching and manoeuvring of organs operated on can cause irreversible damage as regard morphological aspects (outer impact) and physiological aspects (inner impact). The topic is a great challenge in the effort to measure and characterize damages. In general, electrical instruments for surgery employ the following technologies: ultrasound, radiofrequency (monopolar, and bipolar), and laser. They all result in thermal damages difficult to evaluate. The article proposes a method for a pre-screening of organ features during robotic surgery sessions by pointing out mechanical and thermal stresses. A dedicated modelling has been developed based on experimental activities during surgery session. The idea is to model tissue behaviour from real images to help surgeons to be aware of handling during surgery. This is the first step for generalization by considering the type of organ. The measurement acquisitions have been performed by means of an advanced external camera located over the surgery quadrant. The modelling and testing have been carried out on kidneys. The modelling, carried out through Comsol Multiphysics, is based on the bioheat approach. A further comparative technique has been implemented. It is based on computer vision for robotics. The findings of human tissue behavior exhibit reliable results.
Go to article

Authors and Affiliations

Aimé Lay-Ekuakille
1
Moise Avoci Ugwiri
2
Consolatina Liguori
2
Satya P. Singh
3
Md Zia Uhr Rahman
4
Domenico Veneziano
5

  1. University of Salento, Department of Innovation Engineering, Via Monteroni sn, 73100 Lecce, Italy
  2. University of Salerno, Department of Industrial Engineering, Via Giovanni Paolo II n.132, 84084 Fisciano, Italy
  3. Nanyang Technological University, School of Computer Science and Engineering, 50 Nangyang Ave, Singapore 639798
  4. K L University, Department of Electronics & Communication Engineering, Green Fields, Vaddeswaram, Guntur-522502, India
  5. Asl Reggio Calabria, Hospital “Bianchi-Melacrino-Morelli”, Via Giuseppe Melacrino n.21, 89124 Reggio Calabria, Italy

This page uses 'cookies'. Learn more