Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of tests performed on an installation with an aerated microelectrolytic bed (MEL-bed) and sludge sedimentation. The systems were designed in two versions, differing in the aeration method, i.e., a mechanically aerated coagulator (MAC) and an automatically aerated coagulator (AAC). The experiment demonstrated a high (approx. 84%) efficiency of phosphorus removal from a model solution for both versions. The corroding bed was the source of iron in the solution. In the initial phase aeration method affected the phosphorus removal rate, flocculation and sedimentation processes. Physical and chemical changes in the MEL-bed packing were observed.
Go to article

Bibliography

  1. Deng, Y., Englehardt, J.D., Abdul-Aziz, S., Bataille, T., Cueto, J., De Leon, O., Wright, M.E., Gardinali, P., Narayanan, A., Polar, J. & Tomoyuki, S. (2013). Ambient iron-mediated aeration (IMA) for water reuse, Water Research, 47, pp. 850–858, DOI: 10.1016/j.watres.2012.11.005
  2. El Samrani, A.G., Lartiges, B.S., Montarges-Pelletier, E., Kazpard, V., Barres, O. & Ghanbaja, J. (2004).Clarification of municipal sewage with ferric chloride: the nature of coagulant species, Water Research, 38, pp. 756–768, DOI: 10.1016/jwatres.2003.10.002.
  3. Gromiec, M.J. & Gromiec, T.M. (2010). Controlling of eutrophication in aquatic environments, Journal of Water and Land Development, 14, pp. 29–35.
  4. Gu, A.Z., Liu, L., Neethling, J.B., Stensel, H.D. & Murthy, S. (2011). Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Science and Technology, 63 (4), pp. 804–810, DOI: 10.2166/wst.2011.215.
  5. Lai, B., Zhou, Y. & Yang, P. (2012). Passivation of sponge iron and GAC in Fe0/GAC mixed-potential corrosion reactor, Industrial & Engineering Chemistry Research, 51(22), pp. 7777–7785, DOI: 10.1021/ie203019t.
  6. Lakshmanan, D., Clifford, D.A. & Samanta, G. (2009). Ferrous and ferric ion generation during iron electrocoagulation, Environmental Science and Technology, 43(10), pp. 3853–3859, DOI: 10.1021/es8036669.
  7. Li, C., Ma, J., Shen, J. & Wang, P. (2009). Removal phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/neutral pH, Journal of Hazardous Materials, 166, pp. 891–896, DOI: 10.1016/j.jhazmat.2008.11.111.
  8. Libecki, B. (2018) Koagulator do oczyszczania ścieków (Coagulator for wastewater treatment) Patent Application, Polish Patent Office, application No: P.426089
  9. Ma, L. & Zhang, W.-X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron, Environmental Science and Technology, 42, pp. 5384–5389, DOI: 10.1021/es801743s.
  10. Mak, M.S.H., & Irene, M.C. (2009). Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron, Water Research, 43, pp. 4296–4304, DOI: 10.1016/j.watres.2009.06.022.
  11. Qin, Sh., Li, X., Zhang, T. & Ronga, W. (2011). Pretreatment of chemical cleaning wastewater by microelectrolysis process, Procedia Environmental Sciences, 10, pp. 1154–1158, DOI: 10.1016/j.proenv.2011.09.184.
  12. Sarin, P., Snoeyink, V.L., Lytle, D.A. & Kriven, W.M. (2004). Iron corrosion scales: model for scale growth, iron release, and colored water formation, Journal of Environmental Engineering, 4, pp. 364–373.
  13. Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V. & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism, Water Research, 99, pp. 56–65, DOI: 10.1016/j.watres.2016.04.054.
  14. Smoczyński, L., Muńska, K.T., Kosobucka, M. & Pierożyński, B. (2014). Phosphorus and COD removal from chemically coagulated wastewater, Environmental Protection Engineering, 40(3), pp. 63–73.
  15. Sterner, R.W. (2008). On the Phosphorus Limitation Paradigm for Lakes, International Review of Hydrobiology, 93, 4–5, pp. 433–445, DOI: 10.1002/iroh.200811068.
  16. Sun, Y., Li, J., Huang, T. & Guan, X. (2016). The influeces of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review, Water Research, 100, pp. 277–295, DOI: 10.1016/j.watres.2016.05.031.
  17. Tarkowska-Kukuryk, M. (2013). Effect of phosphorus loadings on macrophytes structure and trophic state of dam reservoir on a small lowland river (eastern Poland), Archives of Environmental Protection, 39, 3, pp. 33–46, DOI:10.2478/aep-2013-0029.
  18. Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S. & Giammar, D.E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation, Water Research, 45(1), pp. 384–392, DOI: 10.1016/j.watres.2010.08.016.
  19. Wei, M.-Ch., Wang, K.-S., Hsiao, T.-E., Lin, I.-Ch., Wu, H.-J., Wu, Y.-L., Liu, P.-H. & Chang, S.-H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation, Journal of Hazardous Materials, 195(15) pp. 324–331, DOI: 10.1016/j.jhazmat.2011.08.044.
  20. Yang, X., Xue, Y. & Wang, W. (2009). Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis, Bioresources Technology, 2009, 100(2), pp. 649–653, DOI: 10.1016/j.biortech.2008.07.035.
  21. Yang, Z., Ma, Y., Liu, Y., Li, Q., Zhou, Z. & Ren, Z. (2017).Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chemical Engineering Journal, 315, pp. 403–414, DOI: 10.1016/j.cej.2017.01.042.
  22. Yanhe, H., Han, L., Meili, L., Yimin, S., Cunzhen, L. & Jiaqing, Ch. (2016). Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Separation and Purification Technology, 170, pp. 241–247, DOI: 10.1016/j.seppur.2016.06.058.
  23. Yuan, S., Wu, Ch., Wan, J. & Lu, X. (2009). In situ removal of copper from sediments by a galvanic cell, Journal of Environmental Management, 90, 421–427, DOI: 10.1016/j.jenvman.2007.10.009.
  24. Zou, H. & Wang, Y. (2017). Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater, Archives of Environmental Protection, 43(4), 33–38, DOI: 10.1515/aep-2017-0037.

Go to article

Authors and Affiliations

Bartosz Libecki
1
ORCID: ORCID
Tomasz Mikołajczyk
1
ORCID: ORCID

  1. Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Humic substances (HS) are hydrophobic parts of dissolved organic matter, which are hard to degrade using biological processes. When exposed to disinfection processes, the HS present in wastewater could lead to the formation of disinfection by-products (DBPs), which are harmful and dangerous to health. Thus, a chemical coagulation process is commonly used for HS removal. This work used a cylindrical galvanic cell (CGC) with an iron anode and a copper cathode, where the dissolution of the anode served as an alternative source of metal ions for HS coagulation. The galvanic cell current for CGC stabilized at around 0.6 mA, and the voltage fluctuated, ca. 0.5 V for all solutions. The peaks observed on cyclic voltammograms could be associated only with oxidation and dissolution of iron; no other process was identified. After the process, the structures and molecular composition of the anode surface suggest the loss of Fe mass and the formation of iron oxides due to corrosion. The initial pH of the tested solution influenced the total Fe concentration in the solution as well as colour and turbidity. The quantitative removal of HS by electrolysis and membrane filtration processes at initial pHi = 6.0 yielded 72% and 90%, respectively, after 6 and 10 min. The mechanism of sorption on the flocs of hydroxides as a primary factor in HA removal was suggested.
Go to article

Authors and Affiliations

Bartosz Libecki
1
ORCID: ORCID
Tomasz Mikołajczyk
1
ORCID: ORCID
Bogusław Pierożyński
1
ORCID: ORCID
Mateusz Kuczyński
1
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Departmentof Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland

This page uses 'cookies'. Learn more