Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Ball-shaped concretions ("cannon balls") commonly occur in a marine, organic carbon-rich sedimentary sequence (Innkjegla Member) of the Carolinefjellet Formation (AptianAlbian) in Spitsbergen. The sedimentologic, petrographic and geochemical investigation of these concretions in the Kapp Morton section at Van Mijenfjorden gives insight into their origin and diagenetic evolution. The concretion bodies commenced to form in subsurface environment in the upper part of the sulphate reduction (SR) diagenetic zone. They resulted from pervasive cementation of uncompacted sediment enriched in framboidal pyrite by non-ferroan (up to 2 mol% FeCO3) calcite microspar at local sites of enhanced decomposition of organic matter. Bacterial oxidation of organic matter provided most of carbon dioxide necessary for concretionary calcite precipitation (δ13CCaCO3 ≈ -21%VPDB). Perfect ball-like shapes of the concretions originated at this stage, reflecting isotropic permeability of uncompacted sediment. The concretion bodies cracked under continuous burial as a result of amplification of stress around concretions in a more plastic sediment. The crack systems were filled by non-ferroan (up to 5 mol% FeCO3) calcite spar and blocky pyrite in deeper parts of the SR-zone. This cementation was associated with impregnation of parts of the concretion bodies with microgranular pyrite. Bacterial oxidation of organic matter was still the major source of carbon dioxide for crack-filling calcite precipitation (δ13CCaCO3 ≈ -19% VPDB). At this stage, the cannon-ball concretions attained their final shape and texture. Subsequent stages of concretion evolution involved burial cementation of rudimentary pore space with carbonate minerals (dolomite/ankerite, siderite, calcite) under increased temperature (δ18OCa,Mg,FeCO3 ≈-14% VPDB). Carbon dioxide for mineral precipitation was derived from thermal degradation of organic matter and from dissolution of skeletal carbonates (δ13CCa,Mg,FeCO3≈ - 8‰ VPDB). Kaolinite cement precipitated as the last diagenetic mineral, most probably during post−Early Cretaceous uplift of the sequence.

Go to article

Authors and Affiliations

Krzysztof P. Krajewski
Bartłomiej Luks
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a detailed study of melting processes conducted on Hansbreen - a tidewater glacier terminating in the Hornsund fjord, Spitsbergen. The fieldwork was carried out from April to July 2010. The study included observations of meltwater distribution within snow profiles in different locations and determination of its penetration time to the glacier ice surface. In addition, the variability of the snow temperature and heat transfer within the snow cover were measured. The main objective concerns the impact of meltwater on the diversity of physical characteristics of the snow cover and its melting dynamics. The obtained results indicate a time delay between the beginning of the melting processes and meltwater reaching the ice surface. The time necessary for meltwater to percolate through the entire snowpack in both, the ablation zone and the equilibrium line zone amounted to c. 12 days, despite a much greater snow depth at the upper site. An elongated retention of meltwater in the lower part of the glacier was caused by a higher amount of icy layers (ice formations and melt-freeze crusts), resulting from winter thaws, which delayed water penetration. For this reason, a reconstruction of rain-on-snow events was carried out. Such results give new insight into the processes of the reactivation of the glacier drainage system and the release of freshwater into the sea after the winter period.
Go to article

Authors and Affiliations

Michał Laska
Tomasz Budzik
Bartłomiej Luks

This page uses 'cookies'. Learn more