Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a general idea of the acceleration test method and the design, construction and testing of the inertial dynamorneter test rig developed for small, high performance two-stroke engines. The method is universal and can be also used for four-stroke engines but it is especially useful for the two-stroke ones. The testing procedure is described and the advantages of that type of investigation method are pointed out. It has been proved that the reliability of the method is satisfactory. It was also proven that the individual construction of the inertial dynamorneter of good quality can be performed individually and that it can be a very useful investigation tool in engine tuning practice. The point has been stressed that the major advantage of that method is the possibility of the instantaneous measurement of the engine power characteristic during unsteady engine operation (acceleration) where the time for the single run does not exceed ten seconds.
Go to article

Authors and Affiliations

Paweł Mazuro
Tadeusz Rychter
Download PDF Download RIS Download Bibtex

Abstract

An alternative FEM algorithm of fi nding piston ring pressure distribution to a contact simulation is introduced. The method is basing on an analytical determining of required nodal displacement boundary conditions. Its several confi gurations are tested using APDL and compared to a no-separation contact simulation of a simple 2D fi nite element model of a two-stroke piston ring made of Titanium alloy. Each of the methods tested in the paper brings displacement result and Huber-Misses equivalent stresses close to each other. However, only one of those brings resulting contact pressure close to a no-separation contact simulation. Nonetheless, the obtained confi guration occurred to be less computationally effi cient than no- separation contact simulation performed in an ANSYS software.
Go to article

Authors and Affiliations

Marcin Kaliszewski
Paweł Mazuro

This page uses 'cookies'. Learn more