Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIU for the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIUfor the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper analyses of mode distribution, confinement and experimental losses of the photonic crystal fibers with different core sizes infiltrated with liquid crystal are presented. Four types of fibers are compared: with single-, seven-, nineteen- and thirty seven solid rods forming the core in the same hexagonal lattice of seven “rings” of unit cells (rods or capillaries). The experimental results confirming the influence of the core diameter on light propagation are also included. The diameter of cores determines not only the number of modes in the photonic liquid crystal fiber but also is correlated with experimentally observed attenuation. For fibers with larger cores confinement losses are expected to be higher, but the measured attenuation is smaller because the impact of liquid crystal material losses and scattering is smaller.

Go to article

Authors and Affiliations

M.M. Sala-Tefelska
S. Ertman
T.R. Woliński
P. Mergo

This page uses 'cookies'. Learn more