Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

17-4PH stainless steel finds application in the aerospace industry owing to its good mechanical properties and corrosion resistance. In the literature, this steel is described as good for welding, but research shows that it may be problematic due to the formation of defects. In this study, the welded joints were made by the robotic TIG welding method with various welding speeds (2 and 3 mm/s). The joints were subjected to non-destructive testing and were free from defects. The microstructure was observed by light microscopy and scanning electron microscopy. Changes in the microstructure of the heat affected zone were observed and discussed. Based on the observation of the microstructure and the change in the hardness profile, the heat affected zone was divided into 4 characteristic regions. δ-ferrite and NbC were observed in the martensite matrix. The welded joints were subjected to heat treatment consisting of solution and aging in 550°C for 4 h. The microstructure of the heat affected zone become homogenized as a result of the heat treatment. The content of stable austenite in the welded joint after the heat treatment was about 3%.
Go to article

Authors and Affiliations

A. Nalborczyk-Kazanecka
1
ORCID: ORCID
G. Mrowka-Nowotnik
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study was intended to determine the effect of the input condition of the 17-4PH steel on the microstructure, mechanical properties and stress state of welded joints. The steel adopted for testing was in the solution condition at 1040°C, the aged condition at 550°C/4h and the overaged condition at 760°C/2 h + 620°C/4 h. Samples of 17-4PH steel, after heat treatment processed with different parameters, were electron beam welded (EBW). The microscopic observation (LM, SEM/EDS) showed that the microstructure of the weld consisted of martensite with a δ-ferrite lattice. In the heat-affected zone (HAZ), transformed martensite was found with evidence of niobium carbides. The results of hardness testing revealed the different nature of the hardness profile with the condition the material before the EB welding process. The hardness profile of the HAZ of the welded samples in the as-solution (ES2) and overaged (ES12) condition was varied (from about 340 HV to 450 HV). However, in the aged condition specimen of 17-4PH steel (ES22) showed a similar hardness level, at around 370 HV. The solution condition (ES2) had the highest strength properties Rm 1180.6 MPa with the lowest elongation A 7.6% of all samples tested. The aged welded specimen (ES22) retained high strength Rm 1103.4 MPa with a better relative elongation A 10.1%, whereas the overaged welded specimen (ES12) saw a reduction of strength Rm 950.4 MPa with an improvement in plastic properties A 18.8%. Obtained results showed a significant effect of the input steel condition on the obtained EB welded joints.
Go to article

Authors and Affiliations

A. Nalborczyk-Kazanecka
1 2
ORCID: ORCID
Grażyna Mrówka-Nowotnik
1
ORCID: ORCID
A. Pytel
1 2

  1. Rzeszów University of Technology, Faculty of Mechanical Engineeri ng and Aeronautics, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  2. Pratt & Whitney Rzeszów, Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article describes a new test method to quickly evaluate the durability of a protective coating to dynamic contact with liquid metal. The essence of the method is the movement of a drop of liquid metal inside a rotating ring, covered from the inside with the protective coating under test. The parameters determined in the test are analogous to the classic pin-on-disk tribological test. The method was tested for the system: liquid alloy 2017A vs. AlTiN coating on a copper substrate. The test temperature was 750°C, and exposure times ranged from 30 to 90 minutes. Sliding path equivalent for the metal droplet/coating system ranged from 31.6 to 95 m. The study, which included visual evaluation of the surface of the samples, followed by phase and microstructural analysis, showed the high efficiency of the method for assessing the lifetime of protective coatings on contact with liquid metal. The investigated issue was also analyzed from the model side taking into account changes in the diffusion coefficient at the contact of liquid metal with the substrate, occurring with the progressive degradation of the protective coating.
Go to article

Bibliography

[1] Buyanovskii, I.A. (1994). Tribological test methods and apparatus. Chemistry Technology Fuels Oils. 30, 133-147. https://doi.org/10.1007/BF00723941.
[2] Torbacke, M., Kassman, Å. & Kassfeldt, E. (2014). Tribological Test Methods. In Lubricants: Introduction to Properties and Performance (pp. 113-132). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118799734.
[3] Jakubéczyová, D., Hagarová, M., Hvizdoš, P., Cervová, J. & Frenák, M. (2015). Tribological tests of modern coatings. International Journal of Electrochemical Science. 10(9), 7803-7810.
[4] Hagarová1, M., Savková, J. & Jakubéczyová, D. (2008). Structure and tribological properties of thin TiAlN coating, Journal of Metals, Materials and Minerals. 18(2), 25-31.
[5] Rui Wang, Hai-Juan Mei, Ren-Suo Li, Quan Zhang, Teng-Fei Zhang, Qi-Min Wang, (2018). Friction and wear behavior of AlTiN-coated carbide balls against SKD11 hardened steel at elevated temperatures. Acta Metallurgica Sinica (English Letters). 31, 1073-1083. https://doi.org/10.1007/s40195-018-0753-1.
[6] Eustathopoulos, N. (2015). Wetting by liquid metals application in materials processing: The contribution of the Grenoble group. Metals. 5(1), 350-370. https://doi.org/10.3390/met5010350.
[7] Asthana, R. & Sobczak, N. (2014). Wettability in joining of advanced ceramics and composites: issues and challenges. Ceramics Transactions. 248, 589-600.
[8] Sobczak, N., Singh, M. & Asthana, R. (2005). High-temperature wettability measurements in metal/ceramic systems – some methodological issues. Current Opinion in Solid State and Materials Science. 9(4-5), 241-253. DOI:10.1016/j.cossms.2006.07.007.
[9] Eustathopoulos, N., Sobczak, N., Passerone A. & Nogi, K. (2005). Measurement of contact angle and work of adhesion at high temperature. Journal of Materials Science. 40, 2271-2280. https://doi.org/10.1007/s10853-005-1945-4.
[10] Sobczak, N., Nowak, R., Radziwill, W., Budzioch, J. & Glenz, A. (2008). Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A. 495(1-2), 43-49. https://doi.org/10.1016/j.msea.2007.11.094.
[11] Hotlos, A., Boczkal, G., Nawrocki, J. & Ziewiec, K. (2019). Microstructure of the oxide ceramics/Inconel 713C interface. Materials Science and Technology (United Kingdom). 35(4), 456-461. https://doi.org/10.1080/02670836.2019.1570440.
[12] Sułkowski, B., Boczkal, G., Pałka, P. & Mrówka-Nowotnik, G. (2021) Effect of graphite microstructure on their physical parameters and wettability properties. Refractories and Industrial Ceramics. 62(4), 458-462. https://doi.org/10.1007/s11148-021-00624-2.
[13] Liu Jian, Wang Wei, Yan Wei, Shi Quan Qiang, Yang Zhenguo, Dan Yiyin, Yang Ke. Rotatory experimental apparatus of liquid metal high temperature corrosion, Pat. CN204758460.
[14] Wang Pei, Ye Zhongfei, Dong Hong, Li Dianzhong, Li Yiyi, Rotary type dynamic metal corrosion device, Pat. CN203405397.
[15] Góral, M., Mrówka-Nowotnik, G. (2020). Protective coatings for aluminium die casting moulds and continuous casting moulds: A review Ochrona Przed Korozja. 63(7), 216–219. https://doi.org/10.15199/40.2020.7.1.
[16] Boczkal. G., Patent Application P.435041, A method and device for testing durability of protective coatings in contact with liquid metal, 2020-08-21.
[17] Wriedt, H.A., Murray, J.L. (1986). Binary Alloy Phase Diagrams, 3, (Ed. T. B. Massalski),ASM, Metals Park, OH 32705.
[18] PalDey, S. & Deevi, S.C. (2003). Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A. 342(1-2), 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9.
[19] Mrówka-Nowotnik, G., Gancarczyk, K., Nowotnik, A., Dychtoń, K. & Boczkal, G. (2021). Microstructure and properties of as-cast and heat-treated 2017a aluminium alloy obtained from scrap recycling. Materials. 14(1),89, 1-25. https://doi.org/10.3390/ma14010089.
[20] Ullner, C., Beckmann, J. & Morrell, R. (2002). Instrumented indentation test for advanced technical ceramics. Journal of the European Ceramic Society. 22(8), 1183-1189. https://doi.org/10.1016/S0955-2219(01)00433-2.
[21] Okane, T., Senderowski, C., Zasada, D., Kania, B., Janczak-Rusch, J. & Wolczynski, W. (2011). Thermodynamic justification for the Ni/Al/Ni joint formation by a diffusion brazing. International Journal of Thermodynamics. 14(3), 97-105. https://doi.org /10.5541/ijot.296.
[22] Paul, A., Laurila, T., Vuorinen, V., Divinski, S. (2014). Fick’s Laws of Diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids (pp. 115-139). Springer, Cham. https://doi.org/10.1007/978-3-319-07461-0_3.
[23] Perek-Nowak, M. & Boczkal, G. (2016). Formation of transition phases on interface between monocrystalline Fe and Cu due to mutual solid-state diffusion. Archives of Metallurgy and Materials. 61(2A), 581-585. DOI:10.1515/amm-2016-0099.

Go to article

Authors and Affiliations

Paweł Pałka
1
ORCID: ORCID
Grzegorz Boczkal
1
ORCID: ORCID
Agnieszka Hotloś
1
ORCID: ORCID
Grażyna Mrówka-Nowotnik
2
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Rzeszów University of Technology, Department of Material Science Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more